The composition of billiard graphs in the representation of the natural numbers structure as a discrete dynamical system and singular mega-intervals

Gennady Ryabov, Vladimir Serov

Abstract


The article is a continuation of the natural numbers structure research from the position of representation in the form of six infinite arithmetic progressions and addition and multiplication semi-group actions on this set. Such representation leads to the dynamic discrete system on the basis of the billiard graph (BG) creation. The regular and singular vertices, and corresponding natural numbers are defined on the graph. The singular vertices induce the singular circles- cluster type subsets of natural numbers with a special property of pair additivity (prime-prime and prime-composite pairs). Further consideration leads to the introduction of the composite twins (CT) by analogy with the twin primes (PT), and the hypothesis of the equivalence of these subsets. Methods and examples of constructing arbitrarily large composite twins are given. The BG composition represents the entire phase space of the shortest paths between vertices. The union of BG compositions into a single, geometric-topological form (infinite triangular prism) is proposed. BG features close to the quantum-mechanical are shown.


Full Text:

PDF (Russian)

References


Anosov D.V. Gladkie dinamicheskie sistemy // Itogi nauki i tehn. Ser. Sovrem. probl. mat. Fundam. napravlenija. 1985. t. 1, s. 151-240.

Bunimovich L.A., Sinaj Ja.G., Chernov N.I. Statisticheskie svojstva dvumernyh giperbolicheskih billiardov. Uspehi mat. nauk, 1991. t. 46, vyp. 4 (280), s. 43-92.

Rjabov G.G., Serov V.A. O strukture natural'nyh chisel na baze shesti arifmeticheskih progressij. ⁄ ⁄International Journal of Open Information Technologies. 2016. t.4, # 4, s. 49-53.

http://injoit.org/index.php/j1/article/download/277/235

Rjabov G.G., Serov V.A. Beskonechnye arifmeticheskie progressii i global'nye derev'ja v strukture natural'nyh. ⁄ ⁄ International Journal of Open Information Technologies. 2017. t. 5, # 6, s. 1-5.

http://injoit.org/index.php/j1/article/download/441/411

Rjabov G.G., Serov V.A. Singuljarnost' kak jezotericheskaja storona struktury natural'nyh chisel. ⁄ ⁄International Journal of Open Information Technologies. 2018. t. 6, # 3, s. 27-31.

http://injoit.org/index.php/j1/article/download/548/524

Rjabov G.G. Predstavlenie mnozhestva natural'nyh chisel v vide dinamicheskoj sistemy diskretnogo vremeni. ⁄ ⁄ International Journal of Open Information Technologies. 2017. t. 5, # 8, s. 27-34.

http://injoit.org/index.php/j1/article/download/464/441


Refbacks

  • There are currently no refbacks.


Abava   MSU conference 2018

ISSN: 2307-8162