Mathematical modeling of increasing the level of safety in case of failures of space technology

Boris Melnikov, Elizaveta Davydova

Abstract


As space programs become more sophisticated, the issues of crew safety become more urgent. Due to the extremely high cost of creating and operating manned spacecraft, the cost of losses in case of accidents and failures of aviation and rocket and space technology, and also due to the considerable cost of designing future manned spacecraft, a new approach to ensuring the safety of people at the launch site. For these purposes, we propose to use the mathematical model developed by us to improve the level of safety in the event of an emergency.
In this paper, we propose a new approach to the formulation of optimization problems intended for simulation of emergency situations. This approach can be briefly described as follows. There are some states in which the simulated technique can be located, and for states we also consider the finite sequences of their switching. Examples of such switching are missile launch, launch cancelation, command to the preliminary stage of traction, etc., and each switching is a transition from one state to another. In this case, there is a possibility that some switching will lead to an accident, we consider all such probabilities given.
The coefficients of the matrices are the logarithms of the probabilities that switching between pairs of states does not lead to an accident. In this case, each sequence of states, i.e., some sequence of switching, gives a logarithm of the general probability of absence of an accident. The model we are considering uses the widely known problem of discrete optimization - namely, the traveling salesman problem. We are striving to ensure that the likelihood of an absence of an accident corresponding to some sequence of switchings would be minimal. Since the traveling salesman problem is difficult to solve, we are usually satisfied with finding some pseudo-optimal solution, which, as we believe, corresponds to a sequence of switches that is reasonably close to optimal.

Full Text:

PDF (Russian)

References


Davydova E. V., Strogonova L. B. Matematicheskie metody v obes-

pechenii bezopasnosti pri zapuske pilotiruemogo kosmichesko-

go korablja. Proceedings of International Conference on Innovative

Technologies. 2012. S. 121–124.

Davydova E. V., Strogonova L. B. Nekotorye voprosy matemati-

cheskogo modelirovanija pri obespechenii bezopasnosti jekipazha

pilotiruemogo transportnogo korablja na jetape podgotovki k

pusku. Nauchno-tehnicheskij vestnik Povolzh'ja. # 6. 2014. S. 134–

Lebedev A. M. Metod rascheta ozhidaemogo predotvrashhennogo

ushherba ot aviacionnyh proisshestvij. Ul'janovsk: Izd-vo UVAU

GA, 2007, 155 s.

Krasnov S. I., Lebedev A. M., Pavlov N. V. Matematicheskie mo-

deli v aviacionnoj bezopasnosti. Ul'janovsk: Izd-vo UVAU GA(I),

, 112 s.

Zubkov B. V., Prozorov S. E., Krasnov S. I., Il'in V. M. Aviacion-

naja bezopasnost'. Ul'janovsk: Izd-vo UVAU GA(I), 2014, 411 s.

Garey M., Johnson D. Computers and Intractability. USA: W. H.

Freeman and Company, 1979, 338 p. (Gjeri M., Dzhonson D. Vychisli-

tel'nye mashiny i trudnoreshaemye zadachi. M.: Mir, 1982, 420 s.)

Krasnoshhjokov P. S., Petrov A. A. Principy postroenija modelej.

M.: Izd-vo FAZIS VC RAN, 2000, 412 s.

Myshkis A. D. Jelementy teorii matematicheskih modelej. M.:

Izd-vo KomKniga, 2007, 192 s.

Davydova E. V. Voprosy obespechenija povyshenija bezopasnosti

kosmonavta pri vozniknovenii avarijnoj situacii na starte

za schet sredstv medicinskogo i prostranstvennogo kontrolja. Sovremennye fundamental'nye i prikladnye issledovanija .

# 4 (23). 2016. S. 80–87.

Goodman, S., Hedetniemi S. Introduction to the design and analysis

of algorithms. N.Y.: McGraw-Hill, Inc., 1977, 371 p. (Gudman S.,

Hidetniemi S. Vvedenie v razrabotku i analiz algoritmov. M.:

Mir, 1981, 368 s.)

Hromkovič J. Algorithmics for Hard Problems. Introduction to

Combinatorial Optimization, Randomization, Approximation, and

Heuristics. Berlin: Springer, 2004, 429 p.

Mel'nikov B. F., Jejrih S. N. Podhod k kombinirovaniju nezaver-

shennogo metoda vetvej i granic i algoritma imitacionnoj nor-

malizacii. Vestnik Voronezhskogo gosudarstvennogo universiteta.

Serija: Sistemnyj analiz i informacionnye tehnologii. # 1.

S. 35–38.

Melnikov B. Multiheuristic approach to discrete optimization

problems. Cybernetics and Systems Analysis. Vol. 42. No. 3. 2006.

P. 335–341.

Cormen T. H., Leiserson C. E., Rivest R. L., Stein C. Introduction to

Algorithms. – 3rd Ed.. Massachusetts: MIT Press, 2009, 1312 p.

Dorigo M., Gambardella L. Ant Colony System: A Cooperative

Learning Approach to the Traveling Salesman Problem. IEEE

Transactions on Evolutionary Computation. Vol. 1. No. 1. 1997. P. 53–

Dorigo M., Gambardella L. Ant Colony System: A Cooperative

Learning Approach to the Traveling Salesman Problem. In “Local

Search in Combinatorial Optimization”, eds. Aarts E., Lenstra J. John

Wiley Ed. 1997. P. 215–310.

Applegate D., Bixby R., Chátal L., Cook W. Finding cuts in the TSP

(A preliminary report). DIMACS Technical Report 95-05, March 1995,

p.

Ljalikov V. N. Issledovanie optimizacii ispol'zovanija lokal'-

nyh otsechenij Concorde. Vestnik Saratovskogo gosudarstvennogo

tehnicheskogo universiteta. T. 1. # 1 (30). 2008. S. 68–73.

Makarkin S. B., Mel'nikov B. F. Geometricheskie metody reshe-

nija psevdogeometricheskoj versii zadachi kommivojazhera. Stohasti-

cheskaja optimizacija v informatike. T. 9. # 2. 2013. S. 54–72.

Mel'nikov B. F., Pivneva S. V., Rogova O. A. Reprezentativ-

nost' sluchajno sgenerirovannyh nedeterminirovannyh konechnyh

avtomatov s tochki zrenija sootvetstvujushhih bazisnyh avtoma-

tov. Stohasticheskaja optimizacija v informatike. T. 6. # 1-1.

S. 74–82.

Sigal I. H., Ivanova A. P. Vvedenie v prikladnoe diskretnoe

programmirovanie. M.: Fizmatlit, 2002, 240 s.

Gromkovich Ju. Teoreticheskaja informatika. Vvedenie v teoriju

avtomatov, teoriju vychislimosti, teoriju slozhnosti, teoriju

algoritmov, randomizaciju, teoriju svjazi i kriptografiju. SPb:

BHV, 2010, 338 s.

Mel'nikov B. F., Romanov N. V. Eshhjo raz ob jevristikah dlja za-

dachi kommivojazhjora. Teoreticheskie problemy informatiki i ee

prilozhenij. T. 4. 2001. S. 81–86.

Melnikov B., Radionov A., Moseev A., Melnikova E. Some specific

heuristics for situation clustering problems. In: Proceedings of 1st

International Conference on Software and Data Technologies, ICSOFT2006. Setubal, 2006. P. 272–279.

Melnikov B., Radionov A., Gumayunov V. Some special heuristics

for discrete optimization problems. In: Proceedings of 8th International

Conference on Enterprise Information Systems, ICEIS-2006. Paphos,

P. 360–364.

Melnikov B., Tsyganov A. Some special heuristics for discrete

optimization problems. In: Proceedings of International Symposium

on Parallel Architectures, Algorithms and Programming, PAAP-2012.

Taipei, 2012. P. 194–201.

Mel'nikov B. F., Sajfullina E. F. Primenenie mul'tijevristi-

cheskogo podhoda dlja sluchajnoj generacii grafa s zadannym vekto-

rom stepenej. Izvestija vysshih uchebnyh zavedenij. Povolzhskij

region. Fiziko-matematicheskie nauki. # 3 (27). 2013. S. 70–83.

Mel'nikov B. F., Radionov A. N. O vybore strategii v nede-

terminirovannyh antagonisticheskih igrah. Programmirovanie.

T. 24. # 5. 1998. S. 55–62.

Mel'nikov B. F., Pivneva S. V. Prinjatie reshenij v prikladnyh

zadachah s primeneniem dinamicheski podobnyh funkcij riska.

Vestnik transporta Povolzh'ja. # 3. 2010. S. 28–33.

Mel'nikov B. F., Mel'nikova E. A. Klasterizacija situacij v al-

goritmah real'nogo vremeni dlja zadach diskretnoj optimizacii.

Sistemy upravlenija i informacionnye tehnologii. T. 28. # 2.

S. 16–20.


Refbacks

  • There are currently no refbacks.


Abava   MSU conference 2018

ISSN: 2307-8162