Mathematical modeling of organization management by value guidelines: a method for setting optimization problems

Boris Melnikov, Tatyana Zubova

Abstract


The paper proposes an approach to the formulation of optimization tasks designed to model the organization’s management of value guidelines. In our approach, the development of a conceptual scheme presupposes: the formation of a list of values and their specification in accordance with the indicated levels of expression of value orientations; definition of indicators of their manifestation; formation of a mathematical apparatus for managing efficiency based on value orientations. The implementation of the model begins with the formation of a matrix of the influence of managerial actions on system parameters. With the help of fuzzy logic, we are building the vector of organizational orientation that determines the optimal development of the organization; for this purpose, we set in advance values that correspond to several values. Such values represent the coordinates for different axes for each of the landmarks, with the value of each coordinate corresponding to the degree of significance of the value being characterized. The degree of significance for a particular organization is determined with the help of expert assessments, and there arises the problem of reconciling the assessments. To solve this problem, we propose to build a landmark graph, to assess the degree of its balance in accordance with the Harary criterion, and if this balance exceeds a certain threshold, we declare the expert group insolvent and suggest taking any organizational decisions. And in the case when the threshold is not exceeded, we get a class of optimization problems, which we plan to consider in the next publication.


Full Text:

PDF (Russian)

References


Spencer, Jr. L.M., Spencer S.M. Competence at work. Models for Superior Performance. N.Y.: John Wiley & Sons, Inc., 1993, 372 p. (Spenser-ml. L.M., Spenser S.M. Kompetencii na rabote. M.: HIPPO, 2005, 384 s.)

Zubova T.N., Mel'nikov B.F. Ispol'zovanie setej petri dlja modelirovanija processa prinjatija upravlencheskih reshenij. Vektor nauki Tol'jattinskogo gosudarstvennogo universiteta. # 3. 2011. S.33-37.

Zubova T.N. Possibilitarnaja paradigma kak metodologicheskaja osnova

konceptual'nogo modelirovanija dolgosrochnogo upravlenija predprijatiem. Jevristicheskie algoritmy i raspredelennye vychislenija. # 3. 2015. S.88-98.

Parmenter D. Key Performance Indicators: Developing, Implementing and Using Winning KPI's. N.Y.: John Wiley & Sons, Inc., 2015, 448 p.

Lawrie G.J.G., Cobbold I. 3rd Generation Balanced Scorecard: Evolution of an effective strategic control tool. International Journal of Productivity and Performance Management. Vol. 53. No. 7. 2004. P.611-623.

Denison D.R. Corporate culture and organizational effectiveness. N.Y.: John Wiley & Sons, Inc., 1990, 267 p.

Alpatova N.G. Chem izmerit' jeffektivnost'? Upravlenie kompaniej. # 3. 2006. S.34-36.

Lozhkin O.B. Finansovyj analiz jeffektivnosti i ustojchivosti biznes-processa. Audit i finansovyj analiz. # 2. 2001. S.10-13.

Matancev A.N., Surygina I.Ju. Jeffektivnost' reklamy pri osushhestvlenii aktivnyh prodazh. Marketing v Rossii i za rubezhom. # 5(31). 2002. S.42-53.

Mel'nichuk D.B. Mehanizm ocenki sostojanija sistemy strategicheskogo upravlenija predprijatiem. Menedzhment v Rossii i za rubezhom. # 2. 2002. S.41-46.

Erohin G.P. Indikativnoe planirovanie v sistemah upravlenija social'no-jekonomicheskimi processami. Problemy teorii i praktiki upravlenija. # 2. 2002. S.25-31.

Suvorova A.P. Metodologicheskij podhod k ocenke jeffektivnosti dejatel'nosti jekonomicheskoj organizacii. Finansy i kredit. # 4. 2006. S.43-48.

Erohin G. Jeffektivnost' kompanii: kak rukovoditel' mozhet ee ocenit'. Delovoj ezhenedel'nik «Na stol rukovoditelju» [Jelektronnyj resurs] = Rezhim dostupa: {http://www.nastol.ru/Go/ViewArticle?id=951, svobodnyj. - Zaglavie s jekrana, russkij jaz.

Belova E.O. Metody ocenki uspeshnosti razvitija organizacii. Aktual'nye voprosy jekonomicheskih nauk. # 5-1. 2009. S.121-125.

Gorodeckij S.Ju., Grishagin V.A. Nelinejnoe programmirovanie i mnogojekstremal'naja optimizacija. Nizhnij Novgorod: Izd-vo Nizhegorodskogo gosuniversiteta, 2007, 489 s.

Surkov S.A. Missija organizacii kak instrument upravlenija konkurentnymi preimushhestvami. Menedzhment segodnja, # 1. 2004 [Jelektronnyj resurs] = Rezhim dostupa: {https:// grebennikon.ru/article.php?article_id=jz75&srch, svobodnyj. - Zaglavie s jekrana, russkij jaz.

Novak V., Perfil'eva I., Mochkrozh I. Matematicheskie principy nechjotkoj logiki. M.: Fizmatlit, 2006, 352 s.

Roberts F.S. Diskretnye matematicheskie modeli s prilozhenijami

k social'nym, biologicheskim i jekologicheskim zadacham. M.: Nauka, 1986, 496 s.

Ledeneva T.M., Pogosjan K.S. Soglasovanie lingvisticheskih jekspertnyh ocenok v procedure gruppovogo vybora. Vestnik Voronezhskogo gosudarstvennogo universiteta, serija «Sistemnyj analiz i informacionnye tehnologii». # 2. 2010. S.125-130.

Lagutin M.B. Nagljadnaja matematicheskaja statistika. M.: Izd-vo BINOM. Laboratorija znanij, 2009, 472 p.

Harary F. A matrix criterion for structural balance. Naval Research Logistics. Vol. 7. 1960. P.195-199.

Herrera F., Herrera-Viedma E., Verdegay J.L. Linguistic measures based on fuzzy coincidence for reaching consensus in group decision making. International Journal of Approximate Reasoning. Vol. 16, Iss. 3-4. 1997. P.309-334.

Zade L. Ponjatie lingvisticheskoj peremennoj i ego primenenie k prinjatiju priblizhennyh reshenij. M.: Mir, 1976, 166 c.

Ryzhov A.P. Jelementy teorii nechetkih mnozhestv i ee prilozhenij. M.: Izd-vo Dialog–-MGU, 2003, 81 c.

Melnikov B. Heuristics in programming of nondeterministic games. Programming and Computer Software. Vol. 27, No. 5. 2001. S.277-288.

Mel'nikov B.F., Mel'nikova E.A. Podhod k programmirovaniju nedeterminirovannyh igr (Chast' I: Opisanie obshhih jevristik).

Izvestija vysshih uchebnyh zavedenij. Povolzhskij region. Fiziko-matematicheskie nauki. # 4 (28). 2013. S.29-38.

Baumgertner S.V., Mel'nikov B.F. Mul'tijevristicheskij podhod k probleme zvezdno-vysotnoj minimizacii nedeterminirovannyh konechnyh avtomatov. Vestnik Voronezhskogo gosudarstvennogo universiteta. Serija: Sistemnyj analiz i informacionnye tehnologii. # 1. 2010. S.5-7.

Mel'nikov B.F., Pivneva S.V. Jevristicheskie algoritmy prinjatija reshenij v gumanitarnyh oblastjah. Izvestija Samarskogo nauchnogo centra Rossijskoj akademii nauk. # 8. 2008. S.137-142.

Mel'nikov B.F., Pivneva S.V. Prinjatie reshenij v prikladnyh zadachah s primeneniem dinamicheski podobnyh funkcij riska. Vestnik transporta Povolzh'ja. # 3. 2010. S.28a-33.


Refbacks

  • There are currently no refbacks.


Abava   MSU conference 2018

ISSN: 2307-8162