Exact Solution and Correlation Functions of Generalized Double Ising Chains
Abstract
In this paper the exact solution and correlation functions for a double-chain Ising model with multi-spin interactions and symmetric Hamiltonian density are obtained. The study employs the transfer matrix method to derive fundamental thermodynamic characteristics of the system. The main results include exact expressions for the partition function, free energy, internal energy, specific heat capacity, magnetization, susceptibility, and entropy in a strip of finite length and in the thermodynamic limit. The work provides explicit formulas for the eigenvalues and shows structure of eigenvectors of the transfer matrix. The expression for magnetization in the thermodynamic limit using components of normalized eigenvector corresponding to the maximum eigenvalue is obtained. A detailed analysis is conducted for a special case of interactions involving all kinds of two- and four-spin interactions. This gives the simplified formula for free energy, it is calculated using the root of quadratic equation. Using special relation between parameters the solution for gonihedric model on the plane is obtained. The research reveals properties of the system, including specific features of ground states and phase diagram characteristics. Particular attention is given to the behavior of physical quantities near frustration points and the investigation of spin correlation functions. Plots of physical characteristics, including inverse correlation length, illustrating the obtained results are constructed.
Full Text:
PDFReferences
Ising E. Beitrag zur theorie des ferromagnetismus //Zeitschrift für Physik. – 1925. – Т. 31. – №. 1. – С. 253-258.
Onsager L. Crystal statistics. I. A two-dimensional model with an order-disorder transition //Physical review. – 1944. – Т. 65. – №. 3-4. – С. 117.
Vaks V. G., Larkin A. I., Ovchinnikov Y. N. Ising model with interaction between non-nearest neighbors //Sov. Phys. JETP. – 1966. – Т. 22. – С. 820-826.
Kalok L., De Menezes L. C. Competing interactions in double-chains: Ising and spherical models //Zeitschrift für Physik B Condensed Matter. – 1975. – Т. 20. – №. 2. – С. 223-229.
Yokota T. Pair correlations for double-chain and triple-chain Ising models with competing interactions //Physical Review B. – 1989. – Т. 39. – №. 16. – С. 12312.
Khrapov P., Volkov N. Exact solution of generalized triple Ising chains with multi-spin interactions //arXiv preprint arXiv:2406.10683. – 2024.
Kramers H. A., Wannier G. H. Statistics of the two-dimensional ferromagnet. Part I //Physical Review. – 1941. – Т. 60. – №. 3. – С. 252.
Kramers H. A., Wannier G. H. Statistics of the two-dimensional ferromagnet. Part II //Physical Review. – 1941. – Т. 60. – №. 3. – С. 263.
Kac M., Ward J. C. A combinatorial solution of the two-dimensional Ising model //Physical Review. – 1952. – Т. 88. – №. 6. – С. 1332.
Binder K., Heermann D. W., Binder K. Monte Carlo simulation in statistical physics. – Berlin : Springer-Verlag, 1992. – Т. 8.
Minlos R. A., Sinai Y. G. Spectra of stochastic operators arising in lattice models of a gas //Teoreticheskaya i Matematicheskaya Fizika. – 1970. – Т. 2. – №. 2. – С. 230-243.
Malyshev V. A., Minlos R. A. Gibbs random fields: cluster expansions. – Springer Science & Business Media, 2012. – Т. 44.
Khrapov P. V. Cluster expansion and spectrum of the transfer matrix of the two-dimensional ising model with strong external field //Theoretical and Mathematical Physics. – 1984. – Т. 60. – №. 1. – С. 734-735.
Dos Anjos R. A. et al. Three-dimensional Ising model with nearest-and next-nearest-neighbor interactions //Physical Review E—Statistical, Nonlinear, and Soft Matter Physics. – 2007. – Т. 76. – №. 2. – С. 022103.
Savvidy G. K., Wegner F. J. Geometrical string and spin systems //Nuclear Physics B. – 1994. – Т. 413. – №. 3. – С. 605-613.
Johnston D. A., Mueller M., Janke W. Plaquette Ising models, degeneracy and scaling //The European Physical Journal Special Topics. – 2017. – Т. 226. – №. 4. – С. 749-764.
Cirillo E. N. M., Gonnella G., Pelizzola A. Critical behavior of the three-dimensional Ising model with nearest-neighbor, next-nearest-neighbor, and plaquette interactions //Physical Review E. – 1997. – Т. 55. – №. 1. – С. R17.
Hopfield J. J. Neurons with graded response have collective computational properties like those of two-state neurons //Proceedings of the national academy of sciences. – 1984. – Т. 81. – №. 10. – С. 3088-3092.
Nezhadhaghighi M. G. On the scaling behaviour and conformal properties of triangular Ising model with three-spin interactions at the critical point //Journal of Statistical Mechanics: Theory and Experiment. – 2021. – Т. 2021. – №. 10. – С. 103204.
Khrapov P.V. Disorder Solutions for Generalized Ising Model with Multispin Interaction. Sovremennye informacionnye tehnologii i IT-obrazovanie = Modern Information Technologies and IT-Education. 2019; 15(2):312-319.
Osabutey G. Phase properties of the mean-field Ising model with three-spin interaction //Journal of Mathematical Physics. – 2024. – Т. 65. – №. 6.
Suzuki K. Spin-S Ising models with multispin interactions on the one-dimensional chain and two-dimensional square lattice //Physical Review E. – 2025. – Т. 111. – №. 2. – С. 024132.
Kashapov I. A. Structure of ground states in three-dimensional using model with three-step interaction //Teoreticheskaya i Matematicheskaya Fizika. – 1977. – Т. 33. – №. 1. – С. 110-118.
Rasetti M. Baxter, RJ Exactly Solved Models In Statistical Mechanics. – 1984.
Khrapov P. V., Skvortsov G. A. Exact solution of the three-state generalized double-chain Potts model //International Journal of Open Information Technologies. – 2025. – Т. 13. – №. 3. – С. 34-43.
Refbacks
- There are currently no refbacks.
Abava Кибербезопасность ИТ конгресс СНЭ
ISSN: 2307-8162