A system for annotating biomedical images based on internet technology in oncohematology

V.V. Dmitrieva, Ya.A. Magmanova, V.I. Tsyplyak, E.V. Polyakov

Abstract


The article is devoted to the development of analytical capabilities in hematology based on information technology for annotating biomedical images. The problem under consideration is the lack of solutions that allow expert doctors to automate the process of creating data sets in the field with subsequent processing by machine learning methods. A prototype of an online system for annotating biomedical images for expert evaluation is presented using the example of nucleated bone marrow cells. The annotation process includes: labeling, classification of objects and structures in a digital image. The system is implemented in PHP, using CSS, HTML, JavaScript and a MySQL database. Images obtained from blood and bone marrow preparations of patients with acute lymphoblastic leukemia were used as initial data. The system provides several roles for users: doctor, expert and administrator. The developed system allows for the analysis of biomedical images and indicates not only the type of marker, but also provides the opportunity to add a diagnosis, view patient data, and enter new data for the studied cells. The information system provides for uploading images, annotating images with providing the user with a decision, and evaluating the confidence of the type being viewed. The developed prototype can also be used for consultation by young specialists in the analysis of biomedical images.


Full Text:

PDF (Russian)

References


FazeliS.,SamieiA., Lee T. D., Sarrafzadeh M. Beyond Labels: Visual Representations for Bone Marrow Cell Morphology Recognition //2023 IEEE 11th International Conference on Healthcare Informatics (ICHI). – IEEE, 2023. – С. 111-117. https://doi.org/10.48550/arXiv.2205.09880

Malik S., Iftikhar A., Tauqeer F.H., Adil M., Ahmed S. A Systematic Literature Review on Leukemia Prediction Using Machine Learning //Journal of Computing & Biomedical Informatics. – 2022. – Т. 3. – №. 02. – С. 104-123. DOI: 10.56979/302/2022/73

Deshpande N.M., Gite S., Aluvalu D. A review of microscopic analysis of blood cells for disease detection with AI perspective //PeerJ Computer Science. – 2021. – Т. 7. – С. e460. DOI:10.7717/peerj-cs.460

Fu X., Fu M., LiQ., Peng X., Lu J., Fang F., Chen M. Morphogo: an automatic bone marrow cell classification system on digital images analyzed by artificial intelligence //Acta Cytologica. – 2020. – Т. 64. – №. 6. – С. 588-596. DOI:10.1159/000509524

DmitrievaV.V., Tupitsyn N.N., Polyakov E.V., Nosova E.M., Palladina A.D., TsyplyakV.I., LiberisK.A. Meditsinskaya informatsionnaya sistema s primeneniem web-tekhnologiy dlya diagnostiki ostrykh limfoblastnykh leykozov i minimal'noy ostatochnoy bolezni. // Bezopasnost informacionnyh tehnology. 2021. V. 28. P. 44-55. https://doi.org/10.26583/bit.2021.3.03 (In Russian)

Moral-Muñoz J.A., Herrera-Viedma E.E., Santisteban-Espejo A., Cobo M.J. Software tools for conducting bibliometric analysis in science: An up-to-date review //Profesional de la Información. – 2020. – Т. 29. – №. 1. DOI: 10.3145/epi.2020.ene.03

Karar M., Alotaibi B., Alotaibi M. Intelligent medical IoT-enabled automated microscopic image diagnosis of acute blood cancers //Sensors. – 2022. – Т. 22. – №. 6. – С. 2348. DOI:10.3390/s22062348

Medovy, V. S., Volkov, G. D., Strela, N. M., & Pervushkin, I. V. An Adaptable Cloud-Based Multiple-Unit Laboratory Microscopy System // Biomedical Engineering. – 2021. – Т. 55. – №. 1. – С. 36-40. http://dx.doi.org/10.1007/s10527-021-10066-2

Kaza N., Ojaghi A., Robles F.E. Virtual staining, segmentation, and classification of blood smears for label-free hematology analysis //BME frontiers. – 2022.DOI:10.34133/2022/9853606

Bagg A, Raess PW, Rund D, Bhattacharyya S, Wiszniewska J, Horowitz A, Jengehino D, Fan G, Huynh M, Sanogo A, Avivi I, Katz BZ. Performance Evaluation of a Novel Artificial Intelligence-Assisted Digital Microscopy System for the Routine Analysis of Bone Marrow Aspirates. Mod Pathol. 2024 Sep;37(9):100542. doi: 10.1016/j.modpat.2024.100542. Epub 2024 Jun 17. PMID: 38897451.

Koshkarov A.A., Murashko R.A., Elishev V.G., Shevkunov L.N., Frolova I.G., Choinzonov E.L., Dubrovin A.V., Umetsky I.N. Peculiarities of distributed storage of medical images in oncology service within the framework of creation of a unified digital circuit// Physician and Information Technology. 2020. №S1. P.15-27. DOI: 10.37690/1811-0193-2020-S1-15-27(in Russian).

Tsutsui, S., Pang, W., Wen, B. WBCAtt: a white blood cell dataset annotated with detailed morphological attributes // Advances in Neural Information Processing Systems. – 2024. – Т. 36.

Bouchakwa M., Ayadi Y., Amous I. Application of image processing and convolutional neural networks for flood image classification and semantic segmentation //Environmental modelling & software. – 2022. – Т. 148. – С. 105285.

Dutta A., Zisserman A. The VIA annotation software for images, audio and video //Proceedings of the 27th ACM international conference on multimedia. – 2019. – С. 2276-2279.

Park, S., Yu, S., Kim, J., Yoon, H. An all-in-one vehicle type and license plate recognition system using YOLOv4 //Sensors. – 2022. – Т. 22. – №. 3. – С. 921.


Refbacks



Abava  Кибербезопасность ИБП для ЦОД

ISSN: 2307-8162