Comparison of SVM and Naïve Bayes Algorithms using Binary Grey Wolf Optimizer for Diabetes Mellitus Prediction
Abstract
Full Text:
PDFReferences
E. Gulshan Tokhirovna, “RISK FACTORS FOR DEVELOPING TYPE 2 DIABETES MELLITUS,” 2024. [Online]. Available: http://www.newjournal.org/
K. Arumugam, M. Naved, P. P. Shinde, O. Leiva-Chauca, A. Huaman-Osorio, and T. Gonzales-Yanac, “Multiple disease prediction using Machine learning algorithms,” Mater Today Proc, vol. 80, pp. 3682–3685, Jan. 2023, doi: 10.1016/j.matpr.2021.07.361.
M. I. Akazue, G. A. Nwokolo, O. A. Ejaita, C. O. Ogeh, and E. Ufiofio, “Machine Learning Survival Analysis Model for Diabetes Mellitus,” 2023. [Online]. Available: www.ijisrt.com754
B. Priambodo, R. A. Kadir, and A. Ahmad, “Clustering Urban Roads Using Local Binary Patterns to Enhance the Accuracy of Traffic Flow Prediction,” vol. 14, no. 5, 2024.
D. Shaw, “Review of Grey Wolf Optimizer,” 2024, doi: 10.13140/RG.2.2.14111.57763.
A. Bilal, A. Imran, T. I. Baig, X. Liu, E. Abouel Nasr, and H. Long, “Breast cancer diagnosis using support vector machine optimized by improved quantum inspired grey wolf optimization,” Sci Rep, vol. 14, no. 1, Dec. 2024, doi: 10.1038/s41598-024-61322-w.
A. Amali, D. Maulana, E. Widodo, A. Firmansyah, and M. Danny, “Optimizing Sentiment Analysis of Bekasi Flood Management Using SVM and Naive Bayes with Advanced Feature Selection,” Brilliance: Research of Artificial Intelligence, vol. 4, no. 1, pp. 362–371, Jul. 2024, doi: 10.47709/brilliance.v4i1.4268.
E. ÜLKER and I. M. Nur, “A Novel Hybrid IoT Based IDS Using Binary Grey Wolf Optimizer (BGWO) and Naive Bayes (NB),” European Journal of Science and Technology, Oct. 2020, doi: 10.31590/ejosat.804113.
D. Tomic, J. E. Shaw, and D. J. Magliano, “The burden and risks of emerging complications of diabetes mellitus,” Sep. 01, 2022, Nature Research. doi: 10.1038/s41574-022-00690-7.
R. Bilous, R. Donnely, and I. Idris, “Hanbook of Diabetes,” 2021.
C. A. Whicher, S. O’Neill, and R. I. G. Holt, “Diabetes in the UK: 2019,” Diabetic Medicine, vol. 37, no. 2, pp. 242–247, Feb. 2020, doi: 10.1111/dme.14225.
P. Saeedi et al., “Mortality attributable to diabetes in 20–79 years old adults, 2019 estimates: Results from the International Diabetes Federation Diabetes Atlas, 9th edition,” Diabetes Res Clin Pract, vol. 162, Apr. 2020, doi: 10.1016/j.diabres.2020.108086.
M. K. Gupta and P. Chandra, “A comprehensive survey of data mining,” International Journal of Information Technology (Singapore), vol. 12, no. 4, pp. 1243–1257, Dec. 2020, doi: 10.1007/s41870-020-00427-7.
R. Verma, V. Nagar, and S. Mahapatra, “THE COMMENCEMENT OF MACHINE LEARNING SOLICITATION TO BIOINFORMATICS,” 2021.
D. S. Watson, “On the Philosophy of Unsupervised Learning,” Philos Technol, vol. 36, no. 2, Jun. 2023, doi: 10.1007/s13347-023-00635-6.
D. Wang, Y. Ji, H. Wang, and M. Huang, “Binary grey wolf optimizer with a novel population adaptation strategy for feature selection,” IET Control Theory and Applications, vol. 17, no. 17, pp. 2313–2331, Nov. 2023, doi: 10.1049/cth2.12498.
P. Hu, J. S. Pan, and S. C. Chu, “Improved Binary Grey Wolf Optimizer and Its application for feature selection,” Knowl Based Syst, vol. 195, May 2020, doi: 10.1016/j.knosys.2020.105746.
Y. Yu et al., “Quantitative analysis of multiple components based on support vector machine (SVM),” Optik (Stuttg), vol. 237, Jul. 2021, doi: 10.1016/j.ijleo.2021.166759.
K. Harimoorthy and M. Thangavelu, “Multi-disease prediction model using improved SVM-radial bias technique in healthcare monitoring system,” Mar. 01, 2021, Springer Science and Business Media Deutschland GmbH. doi: 10.1007/s12652-019-01652-0.
M. R. Islam, S. Banik, K. N. Rahman, and M. M. Rahman, “A comparative approach to alleviating the prevalence of diabetes mellitus using machine learning,” Computer Methods and Programs in Biomedicine Update, vol. 4, Jan. 2023, doi: 10.1016/j.cmpbup.2023.100113.
V. Chang, J. Bailey, Q. A. Xu, and Z. Sun, “Pima Indians diabetes mellitus classification based on machine learning (ML) algorithms,” Neural Comput Appl, vol. 35, no. 22, pp. 16157–16173, Aug. 2023, doi: 10.1007/s00521-022-07049-z.
Refbacks
- There are currently no refbacks.
Abava Кибербезопасность IT Congress 2024
ISSN: 2307-8162