Prod2Query: Solving the Problem of Cold Start for E-Commerce Using Generative Language Modeling
Abstract
Full Text:
PDF (Russian)References
Bernardi L. et al. The continuous cold start problem in e-commerce recommender systems //arXiv preprint arXiv:1508.01177. – 2015.
Wang H. et al. A dnn-based cross-domain recommender system for alleviating cold-start problem in e-commerce //IEEE Open Journal of the Industrial Electronics Society. – 2020. – Т. 1. – С. 194-206.
Patro S. G. K. et al. Cold start aware hybrid recommender system approach for E-commerce users //Soft Computing. – 2023. – Т. 27. – №. 4. – С. 2071-2091.
Han C. et al. Addressing Cold Start in Product Search via Empirical Bayes //Proceedings of the 31st ACM International Conference on Information & Knowledge Management. – 2022. – С. 3141-3151.
Gupta P. et al. Treating cold start in product search by priors //Companion Proceedings of the Web Conference 2020. – 2020. – С. 77-78.
Gong Y. et al. An Unified Search and Recommendation Foundation Model for Cold-Start Scenario //Proceedings of the 32nd ACM International Conference on Information and Knowledge Management. – 2023. – С. 4595-4601.
Missault P. et al. Addressing cold start with dataset transfer in e-commerce learning to rank. – 2021.
Li S. Embedding-based product retrieval in Taobao search // Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. — 2021. — С. 3181-3189.
Dai Z., Callan J. Deeper text understanding for IR with contextual neural language modeling //Proceedings of the 42nd international ACM SIGIR conference on research and development in information retrieval. – 2019. – С. 985-988.
Nogueira R., Cho K. Passage Re-ranking with BERT //arXiv preprint arXiv:1901.04085. – 2019.
Dai Z., Callan J. Context-aware document term weighting for ad-hoc search //Proceedings of The Web Conference 2020. – 2020. – С. 1897-1907.
Nogueira R. et al. Document expansion by query prediction //arXiv preprint arXiv:1904.08375. – 2019.
Scells H., Zhuang S., Zuccon G. Reduce, reuse, recycle: Green information retrieval research //Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. – 2022. – С. 2825-2837.
Nogueira R., Lin J., Epistemic A. I. From doc2query to docTTTTTquery //Online preprint. – 2019. – Т. 6. – С. 2.
MacAvaney S. et al. Expansion via prediction of importance with contextualization //Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval. – 2020. – С. 1573-1576.
MacAvaney S., Tonellotto N., Macdonald C. Adaptive re-ranking with a corpus graph //Proceedings of the 31st ACM International Conference on Information & Knowledge Management. – 2022. – С. 1491-1500.
Mallia A. et al. Learning passage impacts for inverted indexes //Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. – 2021. – С. 1723-1727.
Zhuang S., Zuccon G. TILDE: Term independent likelihood moDEl for passage re-ranking //Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. – 2021. – С. 1483-1492.
Maynez J. et al. On faithfulness and factuality in abstractive summarization //arXiv preprint arXiv:2005.00661. – 2020.
Papineni K. et al. Bleu: a method for automatic evaluation of machine translation //Proceedings of the 40th annual meeting of the Association for Computational Linguistics. – 2002. – С. 311-318.
Doddington G. Automatic evaluation of machine translation quality using n-gram co-occurrence statistics //Proceedings of the second international conference on Human Language Technology Research. – 2002. – С. 138-145.
Lin C. Y. Rouge: A package for automatic evaluation of summaries //Text summarization branches out. – 2004. – С. 74-81.
Snover M. et al. A study of translation edit rate with targeted human annotation //Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers. – 2006. – С. 223-231.
Banerjee S., Lavie A. METEOR: An automatic metric for MT evaluation with improved correlation with human judgments //Proceedings of the acl workshop on intrinsic and extrinsic evaluation measures for machine translation and/or summarization. – 2005. – С. 65-72.
Meister C., Vieira T., Cotterell R. If beam search is the answer, what was the question? //arXiv preprint arXiv:2010.02650. – 2020.
Zhao M., White M., Javed F. Query Rewrite for Low Performing Queries in E-commerce Based On Customer Behavior. – 2020.
Cho E. et al. Personalized search-based query rewrite system for conversational ai //Proceedings of the 3rd Workshop on Natural Language Processing for Conversational AI. – 2021. – С. 179-188.
Cui J. et al. Knowledge distillation across ensembles of multilingual models for low-resource languages //2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). – IEEE, 2017. – С. 4825-4829.
Huang P. S. et al. Learning deep structured semantic models for web search using clickthrough data //Proceedings of the 22nd ACM international conference on Information & Knowledge Management. – 2013. – С. 2333-2338.
Nigam P. et al. Semantic product search //Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. – 2019. – С. 2876-2885.
Huang J. T. et al. Embedding-based retrieval in facebook search //Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. – 2020. – С. 2553-2561.
Klein G. et al. Opennmt: Open-source toolkit for neural machine translation //arXiv preprint arXiv:1701.02810. – 2017.
Post M. A call for clarity in reporting BLEU scores //arXiv preprint arXiv:1804.08771. – 2018.
Refbacks
- There are currently no refbacks.
Abava Кибербезопасность IT Congress 2024
ISSN: 2307-8162