S-symbolic environment of artificial intelligence

Alexander Ilyin, Vladimir Ilyin

Abstract


The review presents the conceptual foundations of the use of S‑(symbol-code-signal) environment (S-environment) as the infrastructure basis of artificial intelligence systems. S-(symbols, codes, signals) and S-(symbolic, code and signal) constructions, their properties, relationships and methods of construction are studied in the theory of S-symbols, which serves as the methodological basis for construction of the S-environment. The definition of intelligence is given, the functioning of the mechanisms of intuition and logical inference in the processes of solving well and poorly defined S-problems is considered. The definition of S-problem as an object of representation in the S‑environment of the functioning of artificial intelligence systems is given. The authors' point of view to artificial intelligence is presented. A critical analysis of the A. Turing test is given and the requirements for such tests are formulated.


Full Text:

PDF (Russian)

References


Rojek, I., Mikołajewski, D., Dostatni, E. 2020. Digital twins in product lifecycle for sustainability in manufacturing and maintenance. Appl. Sci., 11(1), 31 pp. DOI: 10.3390/app11010031.

Semeraro, C., Lezoche, M., Panetto, H., Dassisti, M. 2021. Digital twin paradigm: A systematic literature review. Comput. Ind., 130, 103469, 23 pp. DOI: 10.1016/j.compind.2021.103469.

Nguyen, H., Trestian, R., To, D., Tatipamula, M. 2021. Digital twin for 5G and beyond. IEEE Commun. Mag., 59(2), 10–15. DOI: 10.1109/MCOM.001.2000343.

Jia, P., Wang, X., Shen, X. 2021. Digital-twin-enabled intelligent distributed clock synchronization in industrial IoT systems. IEEE Internet Things, 8(6), 4548–4559. DOI: 10.1109/JIOT.2020.3029131.

Ball, P. & Badakhshan, E. 2022. Sustainable Manufacturing Digital Twins: A Review of Development and Application. In: Scholz S. G., Howlett R. J., Setchi R. (eds). Sustainable Design and Manufacturing. KES-SDM 2021. Smart Innovation, Systems and Technologies, vol 262. Springer, Singapore. DOI :10.1007/978-981-16-6128-0_16.

Ilyin, V. D. 2023. Teoriya S-simvolov: kontseptual’nyye osnovaniya [Theory of S-symbols: Conceptual foundations] Sistemy i Sredstva Informatiki [Systems and Means of Informatics], 33(1). 126–134. DOI: 10.14357/08696527230112.

Ilyin, V. D. 2023. Teoriya S-simvolov: formalizatsiya znaniy ob S-zadachakh [Theory of S-symbols: Formalization of knowledge about S-problems] Sistemy i Sredstva Informatiki [Systems and Means of Informatics], 33(1), 124–131. DOI: 10.14357/08696527230212 .

Kim, R. Y. 2011. Efficient Wireless Communications Schemes for Machine to Machine Communications. In: Zain J. M., Wan Mohd W. M. b., El-Qawasmeh E. (eds). Software Engineering and Computer Systems. ICSECS 2011. Communications in Computer and Information Science, vol 181. Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-642-22203-0_28.

Lien, S. Y., Liau, T. H., Kao, C. Y., et al. 2012. Cooperative access class barring for machine-to-machine communications. IEEE T. Wirel. Commun., 11(1), 27–32. DOI: 10.1109/TWC.2011.111611.110350.

Wei, Y. & Blake, M. B. 2010. Service-oriented computing and cloud computing: Challenges and opportunities. IEEE Internet Comput., 14(6), 72–75. DOI: 10.1109/MIC.2010.147.

Perera, C., Liu, C. H., Jayawardena, S. 2015. The emerging Internet of Things marketplace from an industrial perspective: A survey. IEEE T. Emerging Topics Computing, 3(4), 585–598. DOI: 10.1109/TETC.2015.2390034.

Ilyin, V. D. 2022. Symbolic Modeling (S-Modeling): an Introduction to Theory. In: Silhavy, R. (eds). Artificial Intelligence Trends in Systems. CSOC 2022. Lecture Notes in Networks and Systems, vol. 502, 585–591. Springer, Cham. DOI: 10.1007/978-3-031-09076-9_54.

Ilyin, V. D. 1989. Sistema porozhdeniya programm [Program generating system]. Nauka, Moscow. 264 p. ISBN: 5-02-006578-1.

Ilyin, A. V. 2007. Konstruirovaniye razreshayushchikh struktur na zadachnykh grafakh sistemy znaniy o programmiruyemykh zadachakh [Construction of resolving structures on problem graphs of the knowledge system about programmable tasks], Informatsionnye Tekhnologii i Vychslitel'nye Sistemy [Information Technologies and Computing Systems], 3, 30–36.

Ilyin, A. V. & Ilyin, V. D. 2021. Updated methodology for task knowledge based development of parallel programs. In: Silhavy R., Silhavy P., Prokopova Z. (eds.). CoMeSySo 2021. LNNS. Vol. 231, 319–328. Springer, Cham. DOI: 10.1007/978-3-030-90321-3_25.

Walter, W. G. 1953. The living brain. New York, Norton. 311 p.

Freeman, W. J. 1986. W. G. Walter: The Living Brain. In: Palm G., Aertsen A. (eds). Brain Theory. Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-642-70911-1_17.


Refbacks

  • There are currently no refbacks.


Abava  Кибербезопасность IT Congress 2024

ISSN: 2307-8162