Visual analysis of passenger traffic data of the Moscow subway
Abstract
Full Text:
PDF (Russian)References
Kupriyanovsky V. P. et al. Government, industry, logistics, innovation and intellectual mobility in the digital economy //Modern information technologies and IT education. – 2017. – Vol. 13. – No. 1. – pp. 74-96
I. Ceapa, C. Smith, and L. Capra. Avoiding the Crowds: Understanding Tube Station Congestion Patterns from Trip Data. In Proc. Urb-Comp’12, pages 134–141, 2012
L. Sun, D.-H. Lee, A. Erath, and X. Huang. Using Smart Card Data to Extract Passenger’s Spatio-temporal Density and Train’s Trajectory of MRT System. In Proc. UrbComp’12, pages 142–148, 2012.
Aleshko R. A. et al. Development of methods for visualization and processing of geospatial data //Scientific visualization. – 2015. – Vol. 7. – No. 1.
Goodwin, P., & Noland, R. B. (2003). Building new roads really does create extra traffic: a response to Prakash et al. Applied Economics, 35(13), 1451–1457. https://doi.org/10.1080/0003684032000089872
Belyakov S. L., Belyakova M. L., Savelyeva M. N. Spatial data visualization adaptive to changes in the database structure //Devices and systems. Management, control, diagnostics. - 2016. – No. 1. – pp. 25-32.
Card M. Readings in information visualization: using vision to think. – Morgan Kaufmann, 1999.
Ding X. et al. Viptra: Visualization and interactive processing on big trajectory data //2018 19th IEEE International Conference on Mobile Data Management (MDM). – IEEE, 2018. – С. 290-291.
Gonçalves T., Afonso A. P., Martins B. Cartographic visualization of human trajectory data: Overview and analysis //Journal of Location Based Services. – 2015. – Т. 9. – №. 2. – С. 138-166.
Bumgardner, B. (2016). Mapping NYC subway traffic: an interactive. http://bryanbumgardner.com/mapping-nyc-subwaytraffic-an-interactive
Chong, S. M. (2015). NYC subway traffic. http://piratefsh.github.io/mta-maps/public/
Itoh, M., Yokoyama, D., Toyoda, M., Tomita, Y., Kawamura, S., Kitsuregawa, M. (2014). Visual fusion of mega-city big data: An application to traffic and tweets data analysis of Metro passengers. In 2014 IEEE International Conference on BigData (Big Data) (pp. 431–440). IEEE. https://doi.org/10.1109/BigData.2014.7004260
Sobral T., Galvão T., Borges J. Visualization of urban mobility data from intelligent transportation systems //Sensors. – 2019. – Т. 19. – №. 2.
Thomas J. J. Illuminating the path: the research and development agenda for visual analytics. – IEEE Computer Society, 2005.
Zeng L. et al. A passenger flow control method for subway network based on network controllability //Discrete Dynamics in Nature and Society. – 2018.
Open photo bank; URL: https://ru.depositphotos.com/stock-photos
RIA Novosti; URL: https://ria.ru
Misharin A., Namiot D., Pokusaev O. On Passenger Flow Estimation for new Urban Railways //IOP Conference Series: Earth and Environmental Science. – IOP Publishing, 2018. – Т. 177. – №. 1. – С. 012012.
Official website Kepler.gl. URL: https://kepler.gl/
Official documentation website PostgresSQL, URL: https://www.postgresql.org/docs/
Official documentation website Spring Framework, URL: https://docs.spring.io/spring-framework/docs/current/reference/html/
Moscow Government Open Data Portal – Moscow Metro stations; URL: https://data.mos.ru/classifier/7704786030-stantsii-moskovskogo-metropolitena
Web API documentation HeadHunter; URL: https://github.com/hhru/api/blob/master/docs/areas.md
Shin, H. (2020). Analysis of subway passenger flow for a smarter city: knowledge extraction from Seoul metro’s ‘Untraceable’big data. IEEE Access, 8, 69296–69310. https://doi.org/10.1109/ACCESS.2020.2985734
Xiao, F., & Yu, G. (2018). Impact of a new metro line: analysis of metro passenger flow and travel time based on smart card data. Journal of Advanced Transportation, 2018, 9247102. https://doi.org/10.1155/2018/9247102
Tanaka, K. (1950). The relief contour method of representing topography on maps. Geographical Review, 40(3), 444–456. https://doi.org/10.2307/211219
Kuprijanovskij V. P. i dr. Cifrovaja transformacija jekonomiki, zheleznyh dorog i umnyh gorodov. Plany i opyt Velikobritanii //International Journal of Open Information Technologies. – 2016. – T. 4. – #. 10. – S. 22-31.
Sokolov I. A. i dr. Proryvnye innovacionnye tehnologii dlja infrastruktur. Evrazijskaja cifrovaja zheleznaja doroga kak osnova logisticheskogo koridora novogo Shelkovogo puti //International Journal of Open Information Technologies. – 2017. – T. 5. – #. 9. – S. 102-118.
Kuprijanovskij V. P. i dr. Cifrovaja jekonomika i Internet Veshhej-preodolenie silosa dannyh //International Journal of Open Information Technologies. – 2016. – T. 4. – #. 8. – S. 36-42.
Kuprijanovskaja Ju. V. i dr. Umnyj kontejner, umnyj port, BIM, Internet Veshhej i blokchejn v cifrovoj sisteme mirovoj torgovli //International Journal of Open Information Technologies. – 2018. – T. 6. – #. 3. – S. 49-94.
Medvedenko S., Namiot D. Visual analysis of railway passenger traffic data //International Journal of Open Information Technologies. – 2021. – T. 9. – #. 6. – S. 51-60.
Nekraplonna M., Namiot D. The Analysis of Trajectories in Moscow Subway. – 2021.
CVTS RUT https://cvts.rut.digital/ (data obrashhenija: 11.05.2022)
Refbacks
- There are currently no refbacks.
Abava Кибербезопасность IT Congress 2024
ISSN: 2307-8162