A neural network approach for occlusion detection in video
Abstract
Full Text:
PDF (Russian)References
Moving gradients: a path-based method for plausible image
interpolation / Dhruv Mahajan, Fu-Chung Huang, Wojciech Matusik
et al. // ACM Transactions on Graphics (TOG) / ACM. –– Vol. 28. ––
–– P. 42.
Motion-compensated frame interpolation using bilateral motion
estimation and adaptive overlapped block motion compensation /
Byeong-Doo Choi, Jong-Woo Han, Chang-Su Kim, Sung-Jea Ko //
IEEE Transactions on Circuits and Systems for Video Technology. ––
–– Vol. 17, no. 4. –– P. 407–416.
Cremers Daniel, Soatto Stefano. Motion competition: A variational
approach to piecewise parametric motion segmentation // International
Journal of Computer Vision. –– 2005. –– Vol. 62, no. 3. –– P. 249–265.
Chang Michael M, Tekalp A Murat, Sezan M Ibrahim. Simultaneous
motion estimation and segmentation // IEEE transactions on image
processing. –– 1997. –– Vol. 6, no. 9. –– P. 1326–1333.
Ascenso Joao, Brites Catarina, Pereira Fernando. Improving frame
interpolation with spatial motion smoothing for pixel domain
distributed video coding // 5th EURASIP Conference on Speech
and Image Processing, Multimedia Communications and Services /
Citeseer. –– 2005. –– P. 1–6.
Puri A, Hang H-M, Schilling D. An efficient block-matching algorithm
for motion-compensated coding // ICASSP’87. IEEE International
Conference on Acoustics, Speech, and Signal Processing / IEEE. ––
Vol. 12. –– 1987. –– P. 1063–1066.
Symmetrical dense optical flow estimation with occlusions detection /
Luis Alvarez, Rachid Deriche, Théo Papadopoulo, Javier Sánchez //
International Journal of Computer Vision. –– 2007. –– Vol. 75, no. 3. ––
P. 371–385.
Computing visual correspondence with occlusions via graph cuts :
Rep. / Cornell University ; Executor: Vladimir Kolmogorov,
Ramin Zabih : 2001.
Strecha Christoph, Fransens Rik, Van Gool Luc. A probabilistic
approach to large displacement optical flow and occlusion detection //
International Workshop on Statistical Methods in Video Processing /
Springer. –– 2004. –– P. 71–82.
Hur Junhwa, Roth Stefan. Mirrorflow: Exploiting symmetries in joint
optical flow and occlusion estimation // Proceedings of the IEEE
International Conference on Computer Vision. –– 2017. –– P. 312–321.
Determining occlusions from space and time image reconstructions /
Juan-Manuel Pérez-Rúa, Tomas Crivelli, Patrick Bouthemy,
Patrick Pérez // Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. –– 2016. –– P. 1382–1391.
Deepmatching: Hierarchical deformable dense matching /
Jerome Revaud, Philippe Weinzaepfel, Zaid Harchaoui,
Cordelia Schmid // International Journal of Computer Vision. ––
–– Vol. 120, no. 3. –– P. 300–323.
Lee Kyong Joon, Yun Il Dong. Occlusion detecting window matching
scheme for optical flow estimation with discrete optimization // Pattern
Recognition Letters. –– 2017. –– Vol. 89. –– P. 73–80.
Humayun Ahmad, Mac Aodha Oisin, Brostow Gabriel J. Learning to
find occlusion regions // CVPR 2011 / IEEE. –– 2011. –– P. 2161–2168.
Ayvaci Alper, Raptis Michalis, Soatto Stefano. Sparse occlusion
detection with optical flow // International Journal of Computer
Vision. –– 2012. –– Vol. 97, no. 3. –– P. 322–338.
Sun Deqing, Sudderth Erik B, Black Michael J. Layered image motion
with explicit occlusions, temporal consistency, and depth ordering //
Advances in Neural Information Processing Systems. –– 2010. ––
P. 2226–2234.
Sun Deqing, Liu Ce, Pfister Hanspeter. Local layering for joint
motion estimation and occlusion detection // Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. –– 2014. ––
P. 1098–1105.
Li Ang, Yuan Zejian. Symmnet: A symmetric convolutional neural
network for occlusion detection // arXiv preprint arXiv:1807.00959. ––
Occlusions, motion and depth boundaries with a generic network
for disparity, optical flow or scene flow estimation / Eddy Ilg,
Tonmoy Saikia, Margret Keuper, Thomas Brox // Proceedings of the
European Conference on Computer Vision. –– 2018. –– P. 614–630.
Ronneberger Olaf, Fischer Philipp, Brox Thomas. U-net:
Convolutional networks for biomedical image segmentation //
International Conference on Medical image computing and
computer-assisted intervention / Springer. –– 2015. –– P. 234–241.
Chaurasia Abhishek, Culurciello Eugenio. Linknet: Exploiting encoder
representations for efficient semantic segmentation // 2017 IEEE
Visual Communications and Image Processing (VCIP) / IEEE. ––
–– P. 1–4.
Bisenet: Bilateral segmentation network for real-time semantic
segmentation / Changqian Yu, Jingbo Wang, Chao Peng et al. //
Proceedings of the European Conference on Computer Vision. ––
–– P. 325–341.
Flownet 2.0: Evolution of optical flow estimation with deep networks /
Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia et al. // Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. ––
–– P. 2462–2470.
Flownet: Learning optical flow with convolutional networks /
Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg et al. // Proceedings
of the IEEE International Conference on Computer Vision. –– 2015. ––
P. 2758–2766.
Xu Jia, Ranftl René, Koltun Vladlen. Accurate optical flow via direct
cost volume processing // Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. –– 2017. –– P. 1289–1297.
Epicflow: Edge-preserving interpolation of correspondences for optical
flow / Jerome Revaud, Philippe Weinzaepfel, Zaid Harchaoui,
Cordelia Schmid // Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. –– 2015. –– P. 1164–1172.
Pwc-net: Cnns for optical flow using pyramid, warping, and cost
volume / Deqing Sun, Xiaodong Yang, Ming-Yu Liu, Jan Kautz //
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. –– 2018. –– P. 8934–8943.
Imagenet: A large-scale hierarchical image database / Jia Deng,
Wei Dong, Richard Socher et al. –– 2009.
Deep residual learning for image recognition / Kaiming He,
Xiangyu Zhang, Shaoqing Ren, Jian Sun // Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. –– 2016. ––
P. 770–778.
A large dataset to train convolutional networks for disparity, optical
flow, and scene flow estimation / Nikolaus Mayer, Eddy Ilg,
Philip Hausser et al. // Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. –– 2016. –– P. 4040–4048.
Egnal Geoffrey, Wildes Richard P. Detecting binocular
half-occlusions: empirical comparisons of four approaches //
Proceedings IEEE Conference on Computer Vision and Pattern
Recognition / IEEE. –– Vol. 2. –– 2000. –– P. 466–473.
Empirical evaluation of rectified activations in convolutional network / Bing Xu, Naiyan Wang, Tianqi Chen, Mu Li // arXiv preprint
arXiv:1505.00853. –– 2015.
Densely connected convolutional networks / Gao Huang, Zhuang Liu,
Laurens Van Der Maaten, Kilian Q Weinberger // Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. ––
–– P. 4700–4708.
Kingma Diederik P, Ba Jimmy. Adam: A method for stochastic
optimization // arXiv preprint arXiv:1412.6980. –– 2014.
Estellers Virginia, Soatto Stefano. Detecting occlusions as an inverse
problem // Journal of Mathematical Imaging and Vision. –– 2016. ––
Vol. 54, no. 2. –– P. 181–198.
Ha Synh Viet-Uyen, Vu Tuan-Anh, Tran Ha Manh. An extended
occlusion detection approach for video processing // REV Journal on
Electronics and Communications. –– 2019. –– Vol. 8, no. 3-4.
Refbacks
- There are currently no refbacks.
Abava Кибербезопасность IT Congress 2024
ISSN: 2307-8162