On natural numbers structure on the basis of six arithmetical progressions
Abstract
In the article the fundamental direction of Dirichlet about the number of primes in arithmetical progressions on the basis of infinitary structures composition ("k-dimensional shortest paths in n-cube, global k-ary tree and the set of natural numbers") representation in the form of six infinite arithmetic progressions is developed. The theorem on two progressions from these six containing all prime numbers is proved. The geometric-topological construction and the two-dimensional numbering of natural numbers induced on it are considered on the same basis.Examples of natural numbers properties as consequences of the offered constructions are given.
Full Text:
PDF (Russian)References
Wei Sheng Zeng, Ziqi Sun, "A Simple Method for searching for Prime Pairs in the Goldbach Conjecture," arXiv:1505.01185 [math.GM], 4 May 2015. Available: http://arxiv.org/pdf/1505.01185v1
Yoichi Motohashi, "The twin prime conjecture," arXiv:1401.6614v2 [math.NT], 16 Mar 2014. Available: http://arxiv.org/pdf/1401.6614v2
D.H.J. Polymath, "New equidistribution estimates of Zhang type," arXiv:1402.0811v3 [math.NT], 3 Sep 2014. Available: http://arxiv.org/pdf/1402.0811v3
Kevin Ford, Ben Green, Sergei Konyagin, James Maynard, Terence Tao, "Long gaps between primes," arXiv:1412.5029v2 [math.NT], 6 Apr 2015. Available: http://arxiv.org/pdf/1412.5029v2
Janos Pintz, "Patterns of primes in arithmetic progressions," arXiv:1509.01564v2 [math.NT], 7 Sep 2015. Available: http://arxiv.org/pdf/1509.01564v2
G. G. Ryabov, V. A. Serov, “On classification of k-dimension paths in n-cube,” Applied Mathematics, 2014, vol. 5, no. 4, pp. 723-727. Available: http://dx.doi.org/10.4236/am.2014.54069
G.G. Ryabov, V.A. Serov, "Polymorphism of symbolic ternary matrices and genetic space of the shortest k-paths in the n-cube," International Journal of Open Information Technologies, 2015, vol. 3, no. 7, pp. 1-11. Available: http://injoit.org/index.php/j1/article/view/214/173
G. G. Rjabov, V. A. Serov, “Kompozicija infinitarnyh struktur,” Vychislitel'nye metody i programmirovanie. 2015. T. 16, #2. s.557-565. Jelektronnyj resurs: http://num-meth.srcc.msu.ru/zhurnal/tom_2015/pdf/v16r452.pdf
Refbacks
- There are currently no refbacks.
Abava Кибербезопасность IT Congress 2024
ISSN: 2307-8162