Artificial Intelligence in Cybersecurity. Chronicle. Issue 4

Dmitry Namiot

Abstract


In this document, we offer our fourth monthly overview of current events, based on a general topic: the use of Artificial Intelligence (AI) in cybersecurity. In this document, we regularly describe regulatory documents, significant events, and new developments in this field. Currently, we combine these three aspects. First, these are incidents related to the use of AI for cybersecurity. For example, identified vulnerabilities and risks in generative AI, new adversarial impacts on machine learning models and AI agents, etc. Second, this is a global regularity: regulatory documents, new global and local standards, various aspects of Area II in cybersecurity. And third, each overview includes new interesting publications in this area. All subsequent materials reflect the views and preferences of the authors. This article presents the fourth issue of the Chronicle of AI in Cybersecurity.

 


Full Text:

PDF (Russian)

References


Namiot, D. E., E. A. Il'jushin, and I. V. Chizhov. "Iskusstvennyj intellekt i kiberbezopasnost'." International Journal of Open Information Technologies 10.9 (2022): 135-147.

Namiot, D. E., and E. A. Il'jushin. "O kiberriskah generativnogo iskusstvennogo intellekta." International Journal of Open Information Technologies 12.10 (2024): 109-119.

Namiot, Dmitry. "Artificial Intelligence in Cybersecurity. Chronicle. Issue 1." International Journal of Open Information Technologies 13.9 (2025): 34-42.

Namiot, Dmitry. "Artificial Intelligence in Cybersecurity. Chronicle. Issue 2." International Journal of Open Informat ion Techn ologies 13.10 (2025): 58-67.

Kuzmenko, Ilya Dmitrievich, and Dmitry Evgenyevich Namiot. "Metody obnaruzhenija dipfejkov v videokonferencijah v real'nom vremeni." Sovremennye informacionnye tehnologi i i IT-obrazovanie 21.2 (2025).

Prakasha, K. Krishna, and U. Sumalatha. "Privacy-preserving techniques in biometric systems: Approaches and challenges." IEEE Access (2025).

Disrupting the first reported AI-orchestrated cyber espionage campaign https://www.anthropic.com/news/disrupting-AI-espionage Retrieved: Dec, 2025

Disrupting the first reported AI-orchestrated cyber espionage campaign. Full report https://assets.anthropic.com/m/ec212e6566a0d47/original/Disrupting-the-first-reported-AI-orchestrated-cyber-espionage-campaign.pdf

Cifrovaja jekonomika i Internet Veshhej - preodolenie silosa dannyh / V. P. Kuprijanovskij, A. R. Ishmuratov, D. E. Namiot [i dr.] // International Journal of Open Information Technologies. – 2016. – T. 4, # 8. – S. 36-42. – EDN WFVAPB.

Namiot, Dmitry, and Eugene Ilyushin. "On the Cybersecurity of AI Agents." International Journal of Open Information Technologies 13.9 (2025): 13-24.

Bezopasnost' II- https://abava.blogspot.com/2025/12/blog-post_11.html Retrieved: Dec, 2025

15 Security Threats to LLM Agents (with Real-World Examples) https://research.aimultiple.com/security-of-ai-agents/ Retrieved:

Namiot, D. E. Ataki na sistemy mashinnogo obuchenija - obshhie problemy i metody / D. E. Namiot, E. A. Il'jushin, I. V. Chizhov // International Journal of Open Information Technologies. – 2022. – T. 10, # 3. – S. 17-22. – EDN DZFSKQ

Lebedinskiy, Yuriy, and Dmitry Namiot. "Adversarial testing of large language models." International Journal of Open Information Technologies 13.11 (2025): 132-152.

He, Jiajie, et al. "Membership Inference Attacks on Recommender System: A Survey." arXiv preprint arXiv:2509.11080 (2025).

Roznichnaja torgovlja v cifrovoj jekonomike / V. P. Kuprijanovskij, S. A. Sinjagov, D. E. Namiot [i dr.] // International Journal of Open Information Technologies. – 2016. – T. 4, # 7. – S. 1-12. – EDN WCMIWN.

Huang, Xu, et al. "Recommender ai agent: Integrating large language models for interactive recommendations." ACM Transactions on Information Systems 43.4 (2025): 1-33.

Zhu, Xi, et al. "Recommender systems meet large language model agents: A survey." Foundations and Trends® in Privacy and Security 7.4 (2025): 247-396.

Volkov, A. A. O zadachah sozdanija jeffektivnoj infrastruktury sredy obitanija / A. A. Volkov, D. E. Namiot, M. A. Shneps-Shneppe // International Journal of Open Information Technologies. – 2013. – T. 1, # 7. – S. 1-10. – EDN ROMIZX.

Sun, Haifeng, et al. "IUAC: Inaudible Universal Adversarial Attacks Against Smart Speakers." ACM Transactions on Sensor Networks 21.1 (2025): 1-20.

Shilov, Igor, et al. "Beyond Data Filtering: Knowledge Localization for Capability Removal in LLMs." arXiv preprint arXiv:2512.05648 (2025).

Namiot, Dmitry. "What LLM knows about cybersecurity." International Journal of Open Information Technologies 13.7 (2025): 37-46.

Sanz-Gómez, María, et al. "Cybersecurity AI Benchmark (CAIBench): A Meta-Benchmark for Evaluating Cybersecurity AI Agents." arXiv preprint arXiv:2510.24317 (2025).

Bassani, Elias, and Ignacio Sanchez. "On Guardrail Models’ Robustness to Mutations and Adversarial Attacks." Findings of the Association for Computational Linguistics: EMNLP 2025. 2025.

Datta, Shrestha, et al. "Agentic ai security: Threats, defenses, evaluation, and open challenges." arXiv preprint arXiv:2510.23883 (2025).

Branco, Bruno, José Silvestre Silva, and Miguel Correia. "Cyber attacks on commercial drones: A review." IEEE Access (2025).

Ciftci, Umur Aybars, et al. "Adversarial Reality for Evading Deepfake Image Detectors." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2025.

Beyer, Tim, et al. "AdversariaLLM: A Unified and Modular Toolbox for LLM Robustness Research." arXiv preprint arXiv:2511.04316 (2025).

Bisconti, Piercosma, et al. "Adversarial poetry as a universal single-turn jailbreak mechanism in large language models." arXiv preprint arXiv:2511.15304 (2025).

Wang, Yizhu, et al. "Defending against prompt injection with datafilter." arXiv preprint arXiv:2510.19207 (2025).

Nie, Xingyang, et al. "A New Type of Adversarial Examples." arXiv preprint arXiv:2510.19347 (2025).


Refbacks

  • There are currently no refbacks.


Abava  Кибербезопасность ИТ конгресс СНЭ

ISSN: 2307-8162