A structural approach to the design of quantum algorithms based on the composition of modules
Abstract
Full Text:
PDF (Russian)References
Daley A. J. et al. Practical quantum advantage in quantum simulation //Nature. – 2022. – Vol. 607. – №. 7920. – P. 667-676. Available: https://doi.org/10.1038/s41586-022-04940-6
Bova F., Goldfarb A., Melko R. G. Commercial applications of quantum computing //EPJ quantum technology. – 2021. – Vol. 8. – №. 1. – P. 2. Available: https://doi.org/10.1140/epjqt/s40507-021-00091-1
Miessen A. et al. Quantum algorithms for quantum dynamics. // Nat Comput Sci – 2023. –Vol. 3. – Pp. 25–37 Available: https://doi.org/10.1038/s43588-022-00374-2
Bauer C. W. et al. Quantum simulation for high-energy physics //PRX quantum. – 2023. – Vol. 4. – №. 2. – P. 027001.
Available: https://doi.org/10.1103/PRXQuantum.4.027001
Sajjan M., et al. Quantum machine learning for chemistry and physics. // Chemical Society Reviews. – 2022. – 51.15. Pp 6475–6573. Available: https://doi.org/10.1039/ D2CS00203E
Bhuvaneswari, S. et al. Computational analysis: unveiling the quantum algorithms for protein analysis and predictions. // IEEE Access 11. – 2023. – Pp 94023–94033. Available: https://doi.org/10.1109/ACCESS.2023.3310812
Suo, J. et al. Quantum algorithms for typical hard problems: a perspective of cryptanalysis. // Quantum Information Processing. – 2020. – Vol.19. – №. 2 – P.6178. Available: https://doi.org/10.1007/s11128-020-02673-x
Guan W. et al. Quantum machine learning in high energy physics //Machine Learning: Science and Technology. – 2021. – Vol. 2. – №. 1. – P. 011003. Available: https://doi.org/10.1088/2632-2153/abc17d
Leymann F. Towards a pattern language for quantum algorithms // Quantum Technology and Optimization Problems: First International Workshop, QTOP 2019, Munich, Germany, March 18, 2019, Proceedings 1. – Springer International Publishing. 2019. – P. 218-230.
Available: https://doi.org/10.48550/arXiv.1906.03082
Weigold M. et al. Data encoding patterns for quantum computing // Proceedings of the 27th Conference on Pattern Languages of Programs. – 2020. – P. 1–11.
Weigold M. et al. Patterns for hybrid quantum algorithms // Symposium and Summer School on Service-Oriented Computing. – Cham: Springer International Publishing. 2021. – P. 34–51. Available: https://doi.org/10.1007/978-3-030-87568-8_2
Bühler F. et al. Patterns for quantum software development // Proceedings of the 15th International Conference on Pervasive Patterns and Applications. – 2023. – P. 30-39. Available: https://www.iaas.uni-stuttgart.de/ publications/ Buehler2023_PatternsQuantumSE.pdf
Khan A. A. et al. Software architecture for quantum computing systems – A systematic review //Journal of Systems and Software. – 2023. – Vol. 201. – P. 111682. Available: https://doi.org/10.1016/j.jss.2023.111682
Pérez-Castillo R. et al. A preliminary study of the usage of design patterns in quantum software // Proceedings of the 2024 IEEE/ACM 5th International Workshop on Quantum Software Engineering. – 2024. Pp. 41–48. Available: https://doi.org/10.1145/3643667.36482
Paltenghi M., Pradel M. A Survey on Testing and Analysis of Quantum Software. 2024. Available: https://doi.org/10.48550/arXiv.2410.00650
Zrelov P.V. et al. Evaluation of the capabilities of classical computers in the implementation of simulators of quantum algorithms. // Software products and systems. – 2022. – № 4, Vol.35, Pp. 618 – 630. Available: http://doi.org/10.15827/0236-235X.140.618-630
Bergholm V. et al. Pennylane: Automatic differentiation of hybrid quantum-classical computations. //arXiv preprint 2018. arXiv:1811.04968. Available:
https://doi.org/10.48550/arXiv.1811.04968
Callison A., Chancellor N. Hybrid quantum-classical algorithms in the noisy intermediate-scale quantum era and beyond //Physical Review A. – 2022. – Vol. 106. – №. 1. – P. 010101. Available: https://doi.org/10.1103/ PhysRevA.106.010101
Zeguendry A., Jarir Z., Quafafou M. Quantum machine learning: A review and case studies //Entropy. – 2023. – Т. 25. – №. 2. – P. 287. Available: https://doi.org/10.3390/e25020287
McClean J.R. et al. The theory of variational hybrid quantum-classic algorithms // New J. Phys. – 2016. – Vol. 18, N. 2. P. 023023. Available: https://doi.org/10.48550/arXiv.1509.04279
Chalumuri A., Kune R., Manoj B. S. A hybrid classical-quantum approach for multi-class classification //Quantum Information Processing. – 2021. – Vol. 20. – №. 3. Available: http://doi.org/10.1007/s11128-021-03029-9
Preskill J. Quantum computing in the NISQ era and beyond. // Quantum. 2018. – Vol. 2. pp. 79. Available:
http://doi.org/10.22331/q-2018-08-06-79
Cerezo M. et al. Variational quantum algorithms //Nature Reviews Physics. – 2021. – Vol. 3. – №. 9. – Pp. 625–644. Available: https://doi.org/10.1038/s42254-021-00348-9
Biau G., Scornet E. A random forest guided tour //Test. – 2016. – Vol. 25. – №. 2. – Pp. 197-227. Available:
https://doi.org/10.48550/arXiv.1511.05741
Refbacks
- There are currently no refbacks.
Abava Кибербезопасность ИТ конгресс СНЭ
ISSN: 2307-8162