Spatial distributed Lanchester model considering nonlinear dynamics
Abstract
Full Text:
PDF (Russian)References
Shumov V. V., Korepanov V. O., «Mathematical Models of Combat and Military Operations», UBS 105, 15—30, 2023 [in Russian]
Novikov D. A., «Hierarchical Models of Military Operations», UBS 37, 25—62, 2012 [in Russian]
Krasnoshchekov P. S., Petrov A. A., «Principles of Model Construction», Mosk. Gos. Univ., Moscow, 1983 [in Russian]
Atkinson M. P., Kress M., MacKay N., «Targeting, Deployment, and Loss-Tolerance in Lanchester Engagements», Oper. Res. 69 (1), 53-68, 2020. Doi: 10.1287/opre.2020.1992
Chung D., Jeong B., «Analyzing Russia--Ukraine War Patterns Based on Lanchester Model Using SINDy Algorithm», J. Defense Model. Simul., 2023. Doi: 10.1177/15485129231176766
Kostić M., Jovanović A., «Lanchester’s Differential Equations as Operational Command Decision Making Tools», Mil. Tech. Courier 68 (3), 523—540, 2020. Doi: 10.5937/vojnotethnicski-343844057
Kress M., «Lanchester Models for Irregular Warfare», Math. Comput. Model. 52 (1--2), 72—80, 2010. Doi: 10.1016/j.mcm.2010.02.005
González E., Villena M., «Spatial Lanchester Models», Eur. J. Oper. Res. 210 (3), 706—715, 2011. Doi: 10.1016/j.ejor.2010.11.002
Cangiotti N., Capolli M., Sensi M., «A Generalization of Unaimed Fire Lanchester’s Model in Multi-battle Warfare», Appl. Math. Comput. 416, 2022. Doi: 10.1016/j.amc.2021.126741
Keane T., «Partial Differential Equations versus Cellular Automata for Modelling Combat,», J. Defense Model. Simul. 8 (2), 65—74, 2011. Doi: 10.1177/1548512910393302
Belavin V. A., Kurdyumov S. P., «Regimes with Sharpening in Demographic Systems», Vychisl. Mat. 3, 45—56, 2000) [in Russian]
Galaktionov V. A., Kurdyumov S. P., Samarsky A. A., «Quasilinear Heat Conduction Equation with a Source: Sharpening Regimes, Localization, and Exact Solutions», Uspekhi Nauki i Tekhniki 2, 23—34, 1986 [in Russian]
Arnold V. I., «Theory of Catastrophes», Nauka, Moscow, 1990 [in Russian]
Marchuk G. I., «Splitting Methods», Nauka, Moscow, 1988 [in Russian]
Samarsky A. A., «Theory of Difference Schemes», Nauka, Moscow, 2001 [in Russian]
Gallagher J. G., «Finite Element Method», Nauka, Moscow, 1984, [in Russian]
Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P., «Numerical Recipes: The Art of Scientific Computing», Cambridge University Press, Cambridge, 2007
Henry D., «Geometric Theory of Semilinear Parabolic Equations», Mir, Moscow, 1985; Springer, Berlin, 1981
Fradkov A., «Dynamics and Stability under Iterated Sanctions and Counter-sanctions», Autom. Remote Control 82 (3), 401—415, 2021. Doi: 10.1134/S0005117921030045
Fryaznov I. V., Bakirova M. I., «On Economical Difference Schemes for the Heat Conduction Equation in Curvilinear Coordinates», Zh. Vychisl. Mat. Mat. Fiz. 12 (4), 987—996, 1972 [in Russian]
Liu Y., Zhang X., Du H., Wang G., Zeng D., «Construction and Simulation of Lanchester Battle Equations Based on Space-based Information Support», J. Phys.: Conf. Ser. 1955, 2021. Doi: 10.1088/1742-6596/1955/1/012089
Korepanov V. O., Chkhartishvili A. G., Shumov V. V., «Basic Models of Combat Operations», UBS 103, 40—77, 2023 [in Russian]
Kurdyumov S. P., Malinetsky G. G., Potapov A. B., «Regimes with Sharpening in Two-Component Media», Mat. Model. 1, 12—25, 1989 [in Russian]
McCartney M., «Battling with Lanchester’s Equations in the Classroom», Int. J. Math. Educ. Sci. Technol. 54 (3), 451—461, 2023. Doi: 10.1080/0020739X.2021.2022230
Richardson L. F., «Mathematical Theory of War», J. Am. Stat. Assoc. 52 (280), 497—510, 1957. Doi: 10.1080/01621459.1957.10501410
Yoo B. J., «Statistical Review and Explanation for Lanchester Model», Int. J. Appl. Math. Stat. 59 (4), 123—135, 2020
Arnold V. I., «Hard and Soft Mathematical Models», MCNMO, Moscow, 2004) [in Russian].
Zang W. B., «Synergetic Economics: Time and Change in Nonlinear Economic Theory», Springer, Berlin, 1999
Refbacks
- There are currently no refbacks.
Abava Кибербезопасность ИБП для ЦОД СНЭ
ISSN: 2307-8162