Simulation Model of Choosing the Optimal Route
Abstract
Sensor fields are considered. This article presents the development of a simulation model aimed at solving the problems of finding the optimal path in sensor fields. The relevance of the study is due to the growing requirements for routing efficiency in modern sensor networks, which are widely used in various fields, such as smart cities, environmental monitoring and logistics. The article presents the basic principles of constructing a simulation model, including pathfinding algorithms and methods for evaluating the effectiveness of routes. As a result of the work, strategies were developed that take into account dynamic changes in the sensor field. The experimental results demonstrate the high accuracy and efficiency of the proposed model in various scenarios. The study confirms the possibility of using simulation modeling to optimize routes in complex and changing conditions, which opens up new horizons for improving the efficiency of sensor systems.
Full Text:
PDF (Russian)References
Verzun N. A., Vorobyov A. I., Kolbanev M. O., Tsekhanovsky V. V. Study of the Internet of Things technologies within the framework of the discipline "Infocommunication systems and networks" // Modern education: content, technology, quality. 2020. Vol. 1. pp. 71-74. (in Russian).
Utegenov N. B. Internet of things (IoT) and information systems // Universum: technical sciences. 2023. Vol. 7, issue. 112. (in Russian).
Laghari A. A., Wu K., Laghari R. A., Ali M., Khan, A. A. A review and state of art of Internet of Things (IoT) // Archives of Computational Methods in Engineering. 2021. pp. 1-19.
Vereshchagina E. A., Kapetskiy I. O., Yarmonov A. S. Security issues of the Internet of Things: textbook // Moscow: Mir nauki. 2021. Online publication. URL: https://izd-mn.com/PDF/20MNNPU21.pdf. (in Russian).
Verzun N. A., Vorobyov A. I., Kolbanev M. O. Technologies of the Internet of Things // St. Petersburg: St. Petersburg State University of Economics. 2020. 91 p. (in Russian).
Romanova A. A. Simulation model of information interaction in the Internet of Things // Bulletin of ETU LETI. 2022. No. 8. pp. 69-76. DOI 10.32603/2071-8985-2022-15-8-69-76. (in Russian).
Efremenkov Ya. A. Using Anylogic software to create simulation models of technical systems // Science-intensive technologies and innovations (XXV scientific readings): Collection of reports of the International scientific and practical conference, Belgorod, November 23, 2023. – Belgorod: Belgorod State Technological University named after V.G. Shukhov, 2023. pp. 809-813. (in Russian).
Akopov A. S. Simulation modeling: textbook and workshop for universities // Moscow: Yurait Publishing House. 2023. 389 p. (in Russian).
Eremochkin S. Yu., Dorokhov D. V., Zhukov A. A. Development of a simulation model of a single-phase asynchronous electric drive in the SimInTech dynamic modeling environment // Bulletin of NGIEI. 2024. No. 1 (152). pp. 59-71. DOI 10.24412/2227-9407-2024-1-59-71. (in Russian).
Astakhova T. N., Kirilova D. A., Kolbanev M. O., Maslov N. S. Development of a routing algorithm for a wireless sensor network // Telecommunications. 2023. No. 4. pp. 30-38. DOI 10.31044/1684-2588-2023-0-4-30-38. (in Russian).
Berdnikova, A. A., Verzun N. A., Kolbanev M. O. Network level protocols of infocommunication systems and networks // St. Petersburg: St. Petersburg State University of Economics, 2024. 70 p. ISBN 978-5-7310-6454-5. (in Russian).
Olifer V. G., Olifer N. A. Computer networks. Principles, technologies, protocols // St. Petersburg: Piter. 2016. 992 p. (in Russian).
Dijkstra's shortest path calculator. [Electronic resource]. URL: https://www.sas.com.ru/wp/ru/kalkuljator-kratchajshego-puti-dejkstry/ (in Russian).
Manakova V. A., Kostin A. S. Analysis of methods for solving the traveling salesman problem using Dijkstra's and *A algorithms // Systems analysis and logistics. 2023. No. 3 (37). pp. 136-142. DOI 10.31799/2077-5687-2023-3-136-142. (in Russian).
Dijkstra's algorithm – finding the shortest path [Electronic resource]. URL: https://www.matematicus.ru/diskretnaya-matematika/reshenie-algoritma-dejkstry (Accessed: 09.09.2024) (in Russian).
Plotnikov O. A., Podvalny E. S. Solution to the problem of finding the optimal path between two points on a graph with irregular edge weight // Bulletin of the Voronezh State Technical University. 2012. Vol. 8, No. 6. pp. 22-26. (in Russian).
Vtyurina K. S., Osipova M. V., Onofreichuk V. A. Pythagoras' theorem // Methods, models and algorithms for managing modernization processes. 2021. pp. 157-159. (in Russian).
Polovikova O. N., Fokina V. V. Using the Euclidean and Manhattan distances as a measure of proximity for solving a classification problem // Bulletin of the Altai State University. 2010. No. 1-1 (65). pp. 101-102. (in Russian).
Krivulin N. K., Bryushinin M. A. Solution of the problem of placing two objects in space with the Chebyshev metric // Bulletin of the St. Petersburg University. Mathematics. Mechanics. Astronomy. 2022. Vol. 9. No. 4. pp. 625-635 (in Russian).
Litvin D. B., Tavolzhanskaya O. N. Elements of probability theory: a tutorial // Stavropol: StGAU, 2015. 91 p. (in Russian).
Bessonov A. S. Fundamentals of simulation modeling. Modeling in the Anylogic environment: guidelines // Moscow: RTU MIREA, 2024. 24 p. (in Russian)
Boev V. D. Computer modeling in the AnyLogic environment: a tutorial for secondary vocational education // Moscow: Yurait Publishing House. 2023. 298 p. (in Russian).
Boev V. D. Modeling in the AnyLogic environment: a tutorial for universities // Moscow: Yurait Publishing House. 2023. 298 p. (in Russian).
Ponomarchuk Yu. V., Kuznetsov I. V. Programming in Java: a tutorial // Khabarovsk: DVGUPS, 2021. 103 p. (in Russian).
Java [Electronic resource] URL: https://ru.wikipedia.org/?curid=2506& oldid =137993614.
Listopad N. I., Karuk I. A., Khaider A. A. Algorithms for finding the shortest path and their modification // Digital transformation. 2016. No. 1. pp. 48-63. (in Russian).
Verzun, N. A., Kolbanev M. O., Romanova A. A. Indicators of the effectiveness of the information interaction process in the Internet of Things // Bulletin of ETU LETI. 2022. No. 3. pp. 5-14. DOI 10.32603/2071-8985-2022-15-3-5-14. (in Russian).
Astakhova T. N., Verzun N. A, Kolbanev M. O., Polyanskaya N. A., Shamin A. A. Probability-energy characteristics of the interaction of smart things // Bulletin of NGIEI. 2019. No. 4 (95). pp. 66-77. (in Russian).
Broydé F., Clavelier E., Jelinek L., Capek M., Warnick K. Implementing Two Generalizations of the Friis Transmission Formula // Excem Research Papers in Electronics and Electromagnetics. 2024. No. 8.
Yusri R., Edriati S., Yuhendri R. Pelatihan Microsoft Office Excel Sebagai Upaya Peningkatan Kemampuan Mahasiswa Dalam Mengolah Data // Rangkiang: Jurnal Pengabdian Pada Masyarakat. 2020. Vol. 2. No. 1. pp. 32-37/.
Refbacks
- There are currently no refbacks.
Abava Кибербезопасность ИБП для ЦОД СНЭ
ISSN: 2307-8162