Ticket Prediction using LSTM on a GLPI System

Achmad Nurfaizi, Muhaimin Hasanudin

Abstract


GLPI (Gestionnaire Libre de Parc Informatique) is software for asset management, with an additional interface for submitting requests and reporting incidents to computer technicians in the form of tickets. A ticket is a disruption ticket, also called a problem report, that is used in an organization to track the detection, reporting, and resolution of several problems, The number of incoming and unresolved tickets has an impact on intense uncertainty and instability for customers. The data used is primary data, namely ticket data obtained from the GLPI system in the form of raw data, data is processed and recapitulated based on daily customer request tickets. In this study, using the LSTM (long short-term memory) model with the dataset being eight attributes with a total of 2035 records, for optimal data performance, we use min-max scaling sci-kit learn to transform data, extract features, and create models to predict tickets.  The parameters used include batch_size = 32, epoch = 100, and learning_rate = 0.001, with the optimizer being Adam. The best validation accuracy value (val_acc) was obtained at the 82nd epoch with a value of 9.695, and the best validation loss value (val_loss) was 0.0044. The results showed that ticket demand increased while the results of the ticket demand model prediction in the following year decreased because it was predicted that many ticket requests from customers had been completed by the team.  This clearly shows how good the LSTM method is for the analysis of time series and sequential data.

Full Text:

PDF

References


Robby, D. N. R. (2020). IMPLEMENTASI GLPI (GESTIONNAIRE LIBRE DE PARC INFORMATIQUE) UNTUK LAYANAN IT, MANAJEMEN ASET DAN RESERVASI ASET.

Wiranda, L., & Sadikin, M. (2019). Penerapan Long Short Term Memory Pada Data Time Series Untuk Memprediksi Penjualan Produk Pt. Metiska Farma. Jurnal Nasional Pendidikan Teknik Informatika: JANAPATI, 8(3), 184-196.

yuli Astari, Y., Afiyati, A., & Rozaqi, S. W. (2021). Analisis Sentimen Multi-Class pada Sosial Media menggunakan metode Long Short-Term Memory (LSTM). Jurnal Linguistik Komputasional, 4(1), 8-12.

Fitrianah, D., & Jauhari, R. N. (2022). Extractive text summarization for scientific journal articles using long short-term memory and gated recurrent units. Bulletin of Electrical Engineering and Informatics, 11(1), 150-157.

Asih, N. K. (2021). Algoritma J48 untuk Pemodelan Sistem Prediksi Tingkat Kerawanan Banjir dengan Visualisasi Web GIS (Doctoral dissertation, Universitas Mercu Buana Jakarta).

B. Wooten, Building & managing a world class IT help desk. Berkeley, California: McGraw-Hill Osborne Media, 2001.

R. Rico, “Analisis Dan Perancangan Sistem Informasi It- Helpdesk ( Studi Kasus : Pt . Lontar Papyrus Pulp & Paper Industry ),” J. Ilm. MEDIA SISFO, vol. 10, no. 2, pp. 296–305, 2016.

L. D. Fitrani and R. V. H. Ginardi, “Analysis Improvement of Helpdesk System Services Based on Framework COBIT 5 and ITIL 3rd Version (Case Study: DSIK Airlangga University),” in The 4th International Seminal on Science and Technology, 2018, vol. 0, no. 1, p. 28.

R. M. Bahrudin, M. Ridwan, and H. S. Darmojo, “Penerapan Helpdesk Ticketing System Dalam Penanganan Keluhan Penggunaan Sistem Informasi Berbasis Web,” Jutis, vol. 7, no. 1, pp. 71–82, 2019

W. D. Suryono, Saptono, Ristu, and W. Wiranto, “Implementasi Pengembangan Smart Helpdesk di UPT TIK UNS Menggunakan Algoritma Naive Bayes Classifier,” in Seminar Nasional Aplikasi Teknologi Informasi (SNATi), 2017, pp. 39–43.

Balakumar, P., Vinopraba, T., & Chandrasekaran, K. (2023). Deep learning based real time Demand Side Management controller for smart building integrated with renewable energy and Energy Storage System. Journal of Energy Storage, 58, 106412.

Zhao, Jinghua & Dalin, Zeng & Liang, Shuang & Kang, Huilin & Liu, Qinming. (2021). Prediction model for stock price trend based on recurrent neural network. Journal of Ambient Intelligence and Humanized Computing. 12. 10.1007/s12652-020-02057-0.

Saboor, K., Saboor, Q. U. A., Han, L., & Zahid, A. S. (2020). Predicting the stock market using machine learning: Long short-term memory. Electronic Research Journal of Engineering, Computer and Applied Sciences, 2(2020), 202-219.


Refbacks

  • There are currently no refbacks.


Abava  Кибербезопасность IT Congress 2024

ISSN: 2307-8162