Construction of Two-factor Non-elementary Linear Regressions with Boolean Functions
Abstract
This article is devoted to the development of new structural specifications for regression models. The two-factor Leontief function, which is an integral part of non-elementary linear regressions, is considered. Based on it, a logical function of argument activation is introduced, which takes the values 0 and 1, depending on which of the arguments is activated in the min binary operation. A regression model with a logical function of argument activation is formulated. An algorithm for its approximate estimation using the ordinary least squares method is proposed. The developed regression can be used to construct models with a binary dependent variable. Two varieties of non-elementary linear regressions with a logical function of argument activation are synthesized. The proposed models are generalized to the case of many explanatory variables. With the help of regression with a logical function of argument activation, a problem with a binary dependent variable is solved. The model accurately predicted the values of the dependent variable in 76 observations out of 100. And using a non-elementary linear regression with a logical function of argument activation, the problem of modeling the gross regional product of the Irkutsk region was solved. The constructed model turned out to be better than the regression without the logical function of argument activation.
Full Text:
PDF (Russian)References
Arkes J. Regression analysis: a practical introduction. Taylor & Francis, 2023.
Montgomery D.C., Peck E.A., Vining G.G. Introduction to linear regression analysis. John Wiley & Sons, 2021.
Suvorov N.V., Akhunov R.R., Gubarev R.V., Dzyuba E.I., Fayzullin F.S. Primenenie proizvodstvennoy funktsii Kobba-Duglasa dlya analiza promyshlennogo kompleksa regiona // Ekonomika regiona. 2020. Vol. 16. No. 1. P. 187-200.
Afanas'ev A.A., Ponomareva O.S. Narodnokhozyaystvennaya proizvodstvennaya funktsiya Rossii v 1990–2017 gg // Ekonomika i matematicheskie metody. 2020. Vol. 56. No. 1. P. 67-78.
Akhmetov K.A., Madiev G.R., Bekbosynova A.B. Sistemnaya otsenka resursnogo potentsiala sel'skogo khozyaystva na osnove korrelyatsionno-regressionnogo analiza i modelirovaniya proizvodstvennymi funktsiyami // Problemy agrorynka. 2019. No. 3. P. 58-67.
Kleyner G.B. Proizvodstvennye funktsii: teoriya, metody, primenenie. M.: Finansy i statistika, 1986. 239 p.
Bazilevskiy M.P. Otsenivanie lineyno-neelementarnykh regressionnykh modeley s pomoshch'yu metoda naimen'shikh kvadratov // Modelirovanie, optimizatsiya i informatsionnye tekhnologii. 2020. Vol. 8. No. 4 (31).
Bazilevskiy M.P. Metod postroeniya neelementarnykh lineynykh regressiy na osnove apparata matematicheskogo programmirovaniya // Problemy upravleniya. 2022. No. 4. P. 3-14.
Noskov S.I. Tekhnologiya modelirovaniya ob"ektov s nestabil'nym funktsionirovaniem i neopredelennost'yu v dannykh. Irkutsk: RITs GP «Oblinformpechat'», 1996. 321 p.
Bazilevskiy M.P. MNK-otsenivanie parametrov spetsifitsirovannoy na osnove funktsiy Leont'eva dvukhfaktornykh modeley regressii // Yuzhno-Sibirskiy nauchnyy vestnik. 2019. No. 2 (26). P. 66-70.
Boateng E.Y., Abaye D.A. A review of the logistic regression model with emphasis on medical research // Journal of data analysis and information processing. 2019. Vol. 7. No. 4. P. 190-207.
Zabor E.C., Reddy C.A., Tendulkar R.D., Patil S. Logistic regression in clinical studies // International Journal of Radiation Oncology* Biology* Physics. 2022. Vol. 112. No. 2. P. 271-277.
Ismagilov I.I., Kadochnikova E.I. Spetsial'nye modeli ekonometriki v srede Gretl. Kazan': Kazan. un-t, 2018. 91 p.
Ivchenko Yu.S. Opredelenie osnovnykh faktorov urovnya valovogo regional'nogo produkta metodami ekonometricheskogo modelirovaniya po sovokupnosti regionov Rossiyskoy Federatsii // Statistika i ekonomika. 2019. No. 6. P. 4-18.
Kozlova E.I., Novak M.A., Karlova M.Yu. Modelirovanie vzaimosvyazi valovogo regional'nogo produkta, trudovykh resursov i zanyatosti (na primere Lipetskoy oblasti) // Regional'naya ekonomika: teoriya i praktika. 2020. Vol. 18. No. 5. P. 870-890.
Refbacks
- There are currently no refbacks.
Abava Кибербезопасность IT Congress 2024
ISSN: 2307-8162