Detection of fraudulent transactions in the securities market using machine learning methods
Abstract
Full Text:
PDF (Russian)References
Makaeva, K. I. The securities market as an integral part of the financial market / K. I. Makaeva, Z. G. Mandzhieva // Modern science: problems and prospects: collection of materials of the VI International Scientific and Practical Conference, Stavropol, 2017. - Stavropol: Center for Scientific Knowledge "Logos", 2017. - P. 40-45.
Kolesova, I. V. Artificial intelligence and countering the legalization of criminal proceeds using cryptocurrencies / I. V. Kolesova, T. A. Stas // Challenges and opportunities for financial support of stable economic growth (FINANCE-2019): Proceedings of the All-Russian Scientific and Practical Conference: Collection of scientific papers, Sevastopol, 2019. - Sevastopol: Federal State Autonomous Educational Institution of Higher Education "Sevastopol State University", 2019. - P. 174-177.
The National risk assessment of legalization (laundering) of criminal proceeds // Public report. – 2018. [Online resource]. - [website] - URL: https://www.fedsfm.ru/content/files/documents/2018/%D0%BE%D1%86%D0%B5%D0%BD%D0%BA%D0%B0%20 %D1%80%D0%B8%D1%81%D0%BA%D0%BE%D0%B2%20%D0%BE%D0%B4.pdf (Accessed 04/01/2022).
Beketnova, Yu. M. Comparative analysis of machine learning methods for identifying signs of involvement of credit institutions and their clients in questionable transactions / Yu. M. Beketnova // Finance: theory and practice. - 2021. - T. 25. - No. 5. - S. 186-199. – DOI 10.26794/2587-5671-2020-25-5-186-199.
Kalagina, D. S. The use of new technologies in the field of AML / CFT / D. S. Kalagina, V. S. Loginskaya // Vector of Economics. - 2019. - No. 11(41). – S. 61.
Alifanova, E. N. Identification of vulnerability zones to the risk of money laundering in various sectors of the financial market / E. N. Alifanova, Yu. S. Evlahova // Financial research. - 2015. - No. 3(48). - S. 42-52.
Vorontsov, V. K. Time series forecasting / Machine learning course [Online resource] / [website] — URL: http://www.machinelearning.ru/wiki/images/archive/c/cb/20160412121749!Voron-ML -forecasting-slides.pdf (Date of request 04/24/2022)
Waleed Hilal, S. Andrew Gadsden, John Yawney. Financial Fraud: A Review of Anomaly Detection Techniques and Recent Advances – 2022. [Online resource] / [website] — URL: https://www.sciencedirect.com/science/article/pii/S0957417421017164 (Date of request: 06/14/2022)
Python-school [Online resource] // TensorFlow vs PyTorch: что и когда выбирать для Machine Learning / [website] — URL: https://python-school.ru/tensorflow-vs-pytorch/ (Date of request 04/20/2022)
Mark Eshwar Lokanan, Kush Sharma. Fraud prediction using machine learning: The case of investment advisors in Canada / Machine Learning with Applications – 2022. [Online resource]. — [website] — URL: https://www.sciencedirect.com/science/article/pii/S2666827022000111 (Date of request 06/14/2022).
Muhammad Atif Khan Achakzai, Peng Juan. Using machine learning Meta-Classifiers to detect financial frauds, Finance Research Letters Advances – 2022. [Online resource] / [website] — URL: https://www.sciencedirect.com/science/article/pii/S1544612322001866 (Date of request: 06/14/2022)
Xuting Mao, Hao Sun, Xiaoqian Zhu, Jianping Li. Financial fraud detection using the related-party transaction knowledge graph. Procedia Computer Science – 2022. [Online resource] / [website] — URL: https://www.sciencedirect.com/science/article/pii/S1877050922000928 (Date of request: 06/14/2022)
The International Standards for Combating Money Laundering, Financing of Terrorism and Financing Proliferation of Weapons of Mass Destruction // FATF Recommendations. – 2012. [Online resource]. — [website] — URL: https://www.fatf-gafi.org/media/fatf/documents/recommendations/pdfs/FATF-40-Rec-2012-Russian.pdf (Date of request 06/16/2022).
Refbacks
- There are currently no refbacks.
Abava Кибербезопасность IT Congress 2024
ISSN: 2307-8162