Using machine learning to determine accounting codes based on the economic meaning of procurement documentation

Maksim M. Mezhov

Abstract


Large industrial enterprises in the daily processes of their activities generate, process, and store a huge amount of documentation, including procurement, which is required when interacting with various suppliers of necessary goods and services. This article describes an approach to solving the problem of automating the process of determining accounting codes based on the economic meaning of procurement documents using machine learning. The real data collected in the economic department of a trade industrial sector company were used in the volume of 1020 documents containing 183 different types of accounting code (class). The rationale of a quality metric for estimate developed models is given.

The study examined 14 different machine learning algorithms. The best result was shown by the Ridge Classifier algorithm, which showed an accuracy of 81% in determining the accounting codes.

The advantage of the above approach is a detailed description of the solution to the problem of determining the accounting code, based on the economic meaning of the text of the procurement documents.

Full Text:

PDF (Russian)

References


Federal'nyi zakon «O bukhgalterskom uchete» ot 06.12.2011 № 402-FZ, stat'ya 5. «Ob"ekty bukhgalterskogo ucheta». Available: https://www.consultant.ru/document/cons_doc_LAW_122855/191340d29485de342c21500874ade8ee79843bef/

Raizberg B. A. Sovremennyi ekonomicheskii slovar' / B. A. Raizberg, L. Sh. Lozovskii, E. B. Starodubtseva. – 2-e izd., ispr. M.: INFRA-M, 1999. – p. 479.

Federal'nyi zakon "O zakupkakh tovarov, rabot, uslug otdel'nymi vidami yuridicheskikh lits" ot 18.07.2011 № 223-FZ". Available:

https://www.consultant.ru/document/cons_doc_LAW_116964/

Rudak L. V. Analiz podkhodov k resheniyu problemy ponimaniya i obrabotki estestvennogo yazyka metodami mashinnogo obucheniya / L. V. Rudak, O. I. Fedyaev // Sovremennye informatsionnye tekhnologii v obrazovanii i nauchnykh issledovaniyakh (SITONI-2021) : Materialy VII Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii, Donetsk, 23 noyabrya 2021 goda / Pod obshchei redaktsiei V. N. Pavlysha. – Donetsk: Donetskii natsional'nyi tekhnicheskii universitet, 2021. – pp. 216-224

Batrinca B., Treleaven P. Social media analytics: a survey of techniques, tools and platforms // Department of Computer Science, University College London. 2014

Zhelyabin D. V. Primenenie metodov mashinnogo obucheniya dlya resheniya zadachi NLP klassifikatsii teksta na osnove analiza semantiki estestvennogo yazyka / D. V. Zhelyabin // Vestnik Altaiskoi akademii ekonomiki i prava. – 2020. – № 6-2. – pp. 229-235. – DOI 10.17513/vaael.1187

Tumanova A. D. Metody mashinnogo obucheniya v zadachakh avtomaticheskoi obrabotki tekstov na estestvennom yazyke / A. D. Tumanova, N. S. Lagutina // Zametki po informatike i matematike : Sbornik nauchnykh statei. – Yaroslavl' : Yaroslavskii gosudarstvennyi universitet im. P.G. Demidova, 2018. – pp. 174-181

Ivanova A. V. Issledovanie metodov obrabotki tekstovoi informatsii i obzor etapov sozdaniya modeli iskusstvennogo intellekta pri sozdanii chat-botov / A. V. Ivanova, A. A. Kuz'menko, R. A. Filippov [i dr.] // Avtomatizatsiya i modelirovanie v proektirovanii i upravlenii. – 2021. – № 2(12). – pp. 19-23. – DOI 10.30987/2658-6436-2021-2-19-23

Nikulin V. V. Primenenie metodov mashinnogo obucheniya dlya avtomatizirovannoi klassifikatsii i marshrutizatsii v biblioteke ITIL / V. V. Nikulin, S. D. Shibaikin, M. S. Sokolova // Vestnik Astrakhanskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Upravlenie, vychislitel'naya tekhnika i informatika. – 2022. – № 1. – pp. 42-52. – DOI 10.24143/2073-5529-2022-1-42-52

Evchenko I. V. Upravlenie protsessom razrabotki mobil'nykh igr na osnove pokazatelya problem proizvodstva i primeneniya obrabotki estestvennogo yazyka / I. V. Evchenko, E. D. Rozinko, E. A. Morgacheva // International Journal of Open Information Technologies. – 2022. – Т. 10. – № 4. – pp. 84-88

LightGBM: A Highly Efficient Gradient Boosting Decision Tree. – Available: https://www.microsoft.com/en-us/research/wp-content/uploads/2017/11/lightgbm.pdf

Rajaraman, A. "Data Mining". Mining of Massive Datasets / A. Rajaraman, J. Ullman: Cambridge University Press, 2011. – pp. 1–17

Ridge regression and classification. Available: https://scikit-learn.org/stable/modules/linear_model.html#ridge-regression


Refbacks

  • There are currently no refbacks.


Abava  Кибербезопасность IT Congress 2024

ISSN: 2307-8162