Generative Models in Machine Learning
Abstract
Full Text:
PDF (Russian)References
Generative Adversarial Networks https://developers.google.com/machine-learning/gan Retrieved: May, 2022
Nalisnick, Eric, et al. "Do deep generative models know what they don't know?." arXiv preprint arXiv:1810.09136 (2018).
Oussidi, Achraf, and Azeddine Elhassouny. "Deep generative models: Survey." 2018 International Conference on Intelligent Systems and Computer Vision (ISCV). IEEE, 2018.
Goodfellow, Ian. "Nips 2016 tutorial: Generative adversarial networks." arXiv preprint arXiv:1701.00160 (2016).
Reynolds, Douglas A. "Gaussian mixture models." Encyclopedia of biometrics 741.659-663 (2009).
Mixture models https://en.wikipedia.org/wiki/Mixture_model Retrieved: May, 2022
Gaussian Mixture Model https://www.kaggle.com/code/dfoly1/gaussian-mixture-model/notebook Retrieved: May, 2022
Build Better and Accurate Clusters with Gaussian Mixture Models https://www.analyticsvidhya.com/blog/2019/10/gaussian-mixture-models-clustering/ Retrieved: May, 2022
In Depth: Gaussian Mixture Models https://jakevdp.github.io/PythonDataScienceHandbook/05.12-gaussian-mixtures.html Retrieved: May, 2022
Eddy, Sean R. "What is a hidden Markov model?." Nature biotechnology 22.10 (2004): 1315-1316.
Next Word Prediction using Markov Model https://www.kaggle.com/discussions/getting-started/107497 Retrieved: May, 2022
Skrytaja markovskaja model' https://ru.wikipedia.org/wiki/%D0%A1%D0%BA%D1%80%D1%8B%D1%82%D0%B0%D1%8F_%D0%BC%D0%B0%D1%80%D0%BA%D0%BE%D0%B2%D1%81%D0%BA%D0%B0%D1%8F_%D0%BC%D0%BE%D0%B4%D0%B5%D0%BB%D1%8C Retrieved: May, 2022
Markov and Hidden Markov Model https://towardsdatascience.com/markov-and-hidden-markov-model-3eec42298d75 Retrieved: May, 2022
Jelinek, Frederick, John D. Lafferty, and Robert L. Mercer. "Basic methods of probabilistic context free grammars." Speech Recognition and Understanding. Springer, Berlin, Heidelberg, 1992. 345-360.
Raghavan, Sindhu, Adriana Kovashka, and Raymond Mooney. "Authorship attribution using probabilistic context-free grammars." Proceedings of the ACL 2010 conference short papers. 2010.
Blei, David M., Andrew Y. Ng, and Michael I. Jordan. "Latent dirichlet allocation." Journal of machine Learning research 3.Jan (2003): 993-1022.
Latent Dirichlet Allocation https://devopedia.org/latent-dirichlet-allocation Retrieved: May, 2022
Chen, Serena H., and Carmel A. Pollino. "Good practice in Bayesian network modelling." Environmental Modelling & Software 37 (2012): 134-145.
Nikkarila, Juha-Pekka, Ilmari Kangasniemi, and Janne Valtonen. "Bayesian networks: an example of software and some defence applications." (2015).
Heckerman, David. "A Bayesian approach to learning causal networks." arXiv preprint arXiv:1302.4958 (2013).
Hinton, Geoffrey E. "Boltzmann machine." Scholarpedia 2.5 (2007): 1668.
Boltzmann machine https://en.wikipedia.org/wiki/Boltzmann_machine Retrieved: May, 2022
Book-Recommender-System-RBM https://github.com/adityashrm21/book-recommender-system-rbm Retrieved: May, 2022
Understanding Variational Autoencoders (VAEs) from two perspectives: deep learning and graphical models https://jaan.io/what-is-variational-autoencoder-vae-tutorial/ Retrieved: May, 2022
Generative modelling using Variational AutoEncoders(VAE) and Beta-VAE’s https://medium.com/analytics-vidhya/generative-modelling-using-variational-autoencoders-vae-and-beta-vaes-81a56ef0bc9f Retrieved: May, 2022
Variational autoencoders https://www.jeremyjordan.me/variational-autoencoders/ Retrieved: May, 2022
Ghojogh, Benyamin, et al. "Factor analysis, probabilistic principal component analysis, variational inference, and variational autoencoder: Tutorial and survey." arXiv preprint arXiv:2101.00734 (2021).
Kuzina, Anna, Max Welling, and Jakub M. Tomczak. "Diagnosing vulnerability of variational auto-encoders to adversarial attacks." arXiv preprint arXiv:2103.06701 (2021).
Creswell, Antonia, et al. "Generative adversarial networks: An overview." IEEE Signal Processing Magazine 35.1 (2018): 53-65.
Faster Learning and Better Image Quality with Evolving Generative Adversarial Networks https://neurohive.io/en/state-of-the-art/faster-learning-and-better-image-quality-with-evolving-generative-adversarial-networks/ Retrieved: May, 2022
Generative Adversarial Nets (GAN) https://neerc.ifmo.ru/wiki/index.php?title=Generative_Adversarial_Nets_(GAN) Retrieved: May, 2022
Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural information processing systems 27 (2014).
Arjovsky, Martin, Soumith Chintala, and Léon Bottou. "Wasserstein generative adversarial networks." International conference on machine learning. PMLR, 2017.
Mirza, Mehdi, and Simon Osindero. "Conditional generative adversarial nets." arXiv preprint arXiv:1411.1784 (2014).
Artificial Intelligence in Cybersecurity. http://master.cmc.msu.ru/?q=ru/node/3496 (in Russian) Retrieved: Dec, 2021
Namiot D.E., Il'jushin E.A., Chizhov I.V. Tekushhie akademicheskie i industrial'nye proekty, posvjashhennye ustojchivomu mashinnomu obucheniju //International Journal of Open Information Technologies. – 2021. – T. 9. – No. 10. – S. 35-46.
Namiot, D. E., E. A. Il'jushin, and I. V. Chizhov. "ATAKI NA SISTEMY MAShINNOGO OBUChENIJa-OBShhIE PROBLEMY I METODY." International Journal of Open Information Technologies 10.3 (2022): 17-22.
Namiot D. E., Il'jushin E. A., Chizhov I. V. Osnovanija dlja rabot po ustojchivomu mashinnomu obucheniju //International Journal of Open Information Technologies. – 2021. – T. 9. – #. 11. – S. 68-74.
Refbacks
- There are currently no refbacks.
Abava Кибербезопасность IT Congress 2024
ISSN: 2307-8162