Anomaly detection in real-time streaming data processing
Abstract
Full Text:
PDF (Russian)References
Sarvani A., Venugopal B., Devarakonda N. (2019) Anomaly Detection Using K-means Approach and Outliers Detection Technique. In: Ray K., Sharma T., Rawat S., Saini R., Bandyopadhyay A. (eds) Soft Computing: Theories and Applications. Advances in Intelligent Systems and Computing, vol 742. Springer, Singapore.
Lemaire, V., Alaoui Ismaili, O., Cornu´ejols, A., Gay, D.: Predictive k-means with localmodels. In: Workshop LDRC-2020 (Workshop on Learning Data Representation for Clus-tering) in PAKDD-2020 (The 24th Pacific-Asia Conf. On Knowledge Discovery and DataMining), Singapore, 11-16 May 2020.
Tsigkritis, T., Groumas, G. and Schneider, M. (2018) On the Use of k-NN in Anomaly Detection. Journal of Information Security, 9, 70-84. doi: 10.4236/jis.2018.91006.
Unified engine for large-scale data analytics https://spark.apache.org/ Reviewed 01.10.2021
Apache Hadoop https://hadoop.apache.org/ Reviewed 01.10.2021
Wang, Z.; Zhou, Y.H.; Li, G.M. Anomaly Detection by Using Streaming K-Means and Batch K-Means. 2020 5th Ieee International Conference on Big Data Analytics (IEEE ICBDA 2020), Xiamen, China, 8–11 May 2020; pp. 11–17
Clustering - RDD-based API https://spark.apache.org/docs/latest/mllib-clustering.html Reviewed 01.10.2021
Fawcett T. An introduction to ROC analysis. Pattern Recogn Lett. 2006; 27(8): 861–74
Hyndman, R.J., & Athanasopoulos, G. (2021) Forecasting: principles and practice, 3rd edition, OTexts: Melbourne, Australia.
Vannel Zeufacka, Donghyun Kimb, Daehee Seoc, Ahyoung Leea An unsupervised anomaly detection frame-work for detecting anomalies in real time through network system’s log files analysis, High-Confidence Computing Volume 1, Issue 2, December 2021, 100030
Authors: D. Benmahdi, L. Rasolofondraibe, X. Chiementin, S. Murer, A. Felkaoui, RT-OPTICS: real-time classification based on OPTICS method to monitor bearings faults, Journal of Intelligent Manufacturing, Volume 30, Issue 5, June 2019, pp. 2157–2170
Guansong Pang, Chunhua Shen, Longbing Cao, and Anton van den Hengel. 2020. Deep Learning for Anomaly Detection: A Review. ACM Comput. Surv. 1, 1, Article 1 (January 2020), 36 pages. https://doi.org/10.1145/3439950
Md Tahmid Rahman Laskar, Jimmy Xiangji Huang, Vladan Smetana, Chris Stewart, Kees Pouw, Aijun An, Stephen Chan, and Lei Liu. 2021. Extending Isolation Forest for Anomaly Detection in Big Data via K-Means. ACM Trans. Cyber-Phys. Syst. 5, 4, Article 41 (September 2021), 26 pages, DOI: https://doi.org/10.1145/3460976.
Refbacks
- There are currently no refbacks.
Abava Кибербезопасность IT Congress 2024
ISSN: 2307-8162