Simulation model for data processing of a wind farm based on a neural network
Abstract
There is a growing demand for environmentally friendly energy. With an increase in the level of implementation of this type of power plants in the energy sector, the need for forecasting the generation of these plants is growing. Electricity generation forecasting is a necessary process for any power plant, its complexity varies depending on the type of plant. One of the most technically difficult is forecasting the generation of wind farms. The complexity of this process can be associated with the strict dependence of the station on weather conditions and how the windmills will shade each other under certain weather conditions. Also, the complexity of these calculations lies in the fact that meteorological towers are not placed directly on wind turbines, so it is necessary to calculate a mathematical model for forecasting meteorological data based on data from nearby meteorological towers. To predict the data, neural networks are used with the method of inverse error distribution to update the weights of the perceptron. This article discusses an approach to forecasting the generation of wind farms using a neural network. Mathematical models suitable for the process are considered and their accuracy is compared. The architecture of neurons, the type of neural network suitable for such calculations, the method for calculating weights in it, the activation functions of the network, and the method for calculating the gradient are described.
Full Text:
PDF (Russian)References
Elistratov V. V., Chernova A. V. Dolgosrochnoe prognozirovanie parametrov jenergeticheskih kompleksov VJeS-GJeS //Al'ternativnaja jenergetika i jekologija. – 2014. – #. 6 (146). – S. 36-44.
Manusov V. Z. i dr. Povyshenie stepeni integracii vetrojenergeticheskih stancij v jenergosistemu putem ispol'zovanija u sistemnogo operatora matematicheskih modelej prognozirovanija vetra i jelektropotreblenija //Problemy regional'noj jenergetiki. – 2017. – #. 3 (35).
Hajmovich I. N., Martynov I. V. POLUChENIE MODELEJ ZAVISIMOSTI VREMENI RABOTY ALGORITMA FLOJDA I ALGORITMA DEJKSTRY OT KOLIChESTVA VERShIN V GRAFE V SUBD POSTGRESQL //Vestnik Mezhdunarodnogo instituta rynka. – 2018. – #. 2. – S. 137-141.
Kurbackij V. G., Shakirov V. A. Metodicheskoe i programmnoe obespechenie dlja ocenki vetrojenergeticheskogo potenciala severo-vostoka Rossii //Vestnik Irkutskogo gosudarstvennogo tehnicheskogo universiteta. – 2020. – T. 24. – #. 1 (150). – S. 145-163.
Romanov D. E. Nejronnye seti obratnogo rasprostranenija oshibki //Inzhenernyj vestnik dona. – 2009. – T. 9. – #. 3.
Ivanovskij M. N., Shafeeva O. P. Primenenie metoda obratnogo rasprostranenija oshibki dlja obuchenija nejronnoj seti //INFORMACIONNYE TEHNOLOGII V NAUKE I PROIZVODSTVE. – 2018. – S. 39-43.
Gorelova A. V., Ljubimova T. V. Algoritm obratnogo rasprostranenija oshibki //Nauka i sovremennost'. – 2015. – #. 38.
Kadetova A. A., Osipenko N. B. REALIZACIJa ODNOSLOJNOGO PERSEPTRONA NA JaZYKE PYTHON. – 2020.
Mirovoj opyt integracii vetroparkov znachitel'noj moshhnosti v jenergosistemu // http://www.ewa.org/051215 Grid report.pdf
Zorin V.V., Tislenko V.V. Sistemy jelektrosnabzhenija obshhego naznachenija.- Chernigov: ChGTU, 2005.- 341 s.
Hajkin S. Nejronnye seti: Polnyj kurs. Per. s angl. N. N. Kussul', A. Ju. Shelestova. 2-e izd., ispr. — M.: Izdatel'skij dom Vil'jams, 2008, 1103 s.
Chang, W.Y. "Short Term Wind Power Forecasting Using EPSO Based Hybrid Method. Energies", 2013, no. 6, pp. 4879-4896. http://dx.doi.org/10.3390/en6094879.
Manusov V.Z., Khaldarov Sh.K., Boiko K.N. [Development of a device for flexible regulation of active and reactive power flows for effective integration of wind power plants into the power system]. Materialy XIII mezhdunarodnoi konferentsii «Aktual'nye problemy elektronnogo priborostroeniia» APEP-2014, V 7 tomakh [The Materials of the XIII International Conference "Actual Problems of Electronic Instrument Engineering" APEIE-2014, In 7 volumes]. Novosibirsk, 2016, pp. 64-66. (In Russian).
Chang, W.Y. "Comparison of Three Short Term Wind Power Forecasting Systems. Advanced Materials Research", 2013, no. 684, pp. 671-675. http://dx.doi.org/10.4028/www.scientific.net/AM R.684.671.
Sideratos G., Hatziargyriou N.D. "An Advanced Statistical Method for Wind Power Forecasting". IEEE Transactions on Power Systems, 2007, no. 22, pp. 258-265. http://dx.doi.org/10.1109/ TPWRS.2006.889078.
Lange M., Focken U. "New Developments in Wind Energy Forecasting". Proceedings of the 2008 IEEE Power and Energy Society General meeting, Pittsburgh, 20-24 July 2008, pp. 1-8.
Refbacks
- There are currently no refbacks.
Abava Кибербезопасность IT Congress 2024
ISSN: 2307-8162