About automatic generation of commit messages in version control systems
Abstract
Full Text:
PDF (Russian)References
Otte S. Version Control Systems //Computer systems and telematics. - 2009. - pp. 11-13.
Ruparelia N. B. The history of version control //ACM SIGSOFT Software Engineering Notes. - 2010. - Vol. 35. - No. 1. - pp. 5-9;
History of version control systems // Habr URL: https://habr.com/ru/post/478752 / (accessed: 07.12.2021).
Rochkind M. J. The source code control system //IEEE transactions
on Software Engineering. - 1975. - No. 4. - pp. 364-370
Chapter 5 SCCS Source Code Control System // Oracle docs URL: https://docs.oracle.com/cd/E19504-01/802-5880/6i9k05dhp/index.html (accessed: 07.12.2021).
Buse R. P. L., Weimer W. R. Automatically documenting program changes //Proceedings of the IEEE/ACM international conference on Automated software engineering. - 2010. - pp. 33-42.
2021 Developer Survey // Stack Overflow URL: https://insights.stackoverflow.com/survey/2021#overview (acessed: 13.12.2021).
Tsitoara M. Git Best Practices //Beginning Git and GitHub. – Apress, Berkeley, CA, 2020. – pp. 79-86.
Dyer R. et al. Boa: A language and infrastructure for analyzing ultra-large-scale software repositories //2013 35th International Conference on Software Engineering (ICSE). – IEEE, 2013. – pp. 422-431.
Cortés-Coy L. F. et al. On automatically generating commit messages via summarization of source code changes //2014 IEEE 14th International Working Conference on Source Code Analysis and Manipulation. – IEEE, 2014. – pp. 275-284.
Jiang S., McMillan C. Towards automatic generation of short summaries of commits //2017 IEEE/ACM 25th International Conference on Program Comprehension (ICPC). – IEEE, 2017. – pp. 320-323.
Mockus A., Votta L. G. Identifying Reasons for Software Changes using Historic Databases //icsm. – 2000. – pp. 120-130.
Abram H. et al. On the naturalness of software //Proceedings of the 34th International Conference on Software Engineering. – 2012. – pp. 837-847.
Jiang S., Armaly A., McMillan C. Automatically generating commit messages from diffs using neural machine translation //2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE). – IEEE, 2017. – pp. 135-146.
Alexandru C. V., Panichella S., Gall H. C. Replicating parser behavior using neural machine translation //2017 IEEE/ACM 25th International Conference on Program Comprehension (ICPC). – IEEE, 2017. – pp. 316-319.
Sutskever I., Vinyals O., Le Q. V. Sequence to sequence learning with neural networks //Advances in neural information processing systems. – 2014. – pp. 3104-3112.
Cho K. et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation //arXiv preprint arXiv:1406.1078. – 2014.
Hinton G. E., Salakhutdinov R. R. Replicated softmax: an undirected topic model //Advances in neural information processing systems. – 2009. – Vol. 22. – pp. 1607-1614.
Papineni K. et al. Bleu: a method for automatic evaluation of machine translation //Proceedings of the 40th annual meeting of the Association for Computational Linguistics. – 2002. – pp. 311-318.
Feng Z. et al. Codebert: A pre-trained model for programming and natural languages //arXiv preprint arXiv:2002.08155. – 2020.
Open Sourcing BERT: State-of-the-Art Pre-training for Natural Language Processing // Google AI Blog URL: https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html (accessed: 15.12.2021).
Jung T. H. CommitBERT: Commit Message Generation Using Pre-Trained Programming Language Model //arXiv preprint arXiv:2105.14242. – 2021.
Feng Z. et al. Codebert: A pre-trained model for programming and natural languages //arXiv preprint arXiv:2002.08155. – 2020.
Refbacks
- There are currently no refbacks.
Abava Кибербезопасность IT Congress 2024
ISSN: 2307-8162