Semi-lattices of the subsets of potential roots in the problems of the formal languages theory. Part II. Construction of an inverse morphism
Abstract
Full Text:
PDF (Russian)References
Melnikov B. Semi-lattices of the subsets of potential roots in the problems of the formal languages theory. Part I. Extracting the root from the language // International Journal of Open Information Technologies. – 2022. – Vol. 10. No. 4. – P. 1–9 (in Russian).
Skornyakov L. (Ed.) General Algebra. Vol. 2. – Moscow, Nauka. – 1991. – 480 p. (in Russian).
Yablonskiy S. Introduction to Discrete Mathematics. Study Guide for Universities. – Moscow, Vysshaya Shkola. – 2001. – 384 p. (in Russian).
Novikov F. Discrete mathematics for programmers. – Saint Petersburg, Piter. – 2009. – 304 p. (in Russian).
Melnikov B. Variants of finite automata, corresponding to infinite iterative morphism trees. Part I // International Journal of Open Information Technologies. – 2021. – Vol. 9. No. 7. – P. 5–13. (in Russian).
Melnikov B. Variants of finite automata, corresponding to infinite iterative morphism trees. Part II // International Journal of Open Information Technologies. – 2021. – Vol. 9. No. 10. – P. 1–8. (in Russian).
Abramyan M., Melnikov B. Algorithms of transformation of finite automata, corresponding to infinite iterative trees // Modern information technologies and IT education. – 2021. – Vol. 17. No. 1. – P. 13–23. (in Russian).
Melnikov B., Melnikova A. A polynomial algorithm for constructing a finite automaton for checking the equality of infinite iterations of two finite languages // International Journal of Open Information Technologies. – 2021. – Vol. 9. No. 11. – P. 1–10. (in Russian).
Graham R., Knuth D., Patashnik O. Concrete Mathematics. A foundation for computer science. – USA, Addison-Wesley Professional. – 1994. – xiv+657 p.
Melnikov B. Subclasses of the context-free languages class (monograph). – Moscow, Moscow State University Ed. – 1995. – 174 p. –
ISBN 5-211-03448-1. (in Russian).
Alekseeva A., Melnikov B. Iterations of finite and infinite languages and nondeterministic finite automata // Vector of Science of Togliatti State University. – 2011. – No. 3 (17). – P. 30–33 (in Russian).
Melnikov B. Regular languages and nondeterministic finite automata (monograph). – Moscow, Russian Social State University Ed. – 2018. – 179 p. – ISBN 978-5-7139-1355-7. (in Russian).
Skornyakov L. (Ed.) General Algebra. Vol. 1. – Moscow, Nauka. – 1990. – 592 p. (in Russian).
Hausdorff F. Grundzüge der Mengenlehre. – Grundzüge der Mengenlehre, von Veit. – 1914. – ISBN 978-0-8284-0061-9. (Reprinted by Chelsea Publishing Company in 1949.)
Gurov S. Boolean algebras, ordered sets, lattices: definitions, properties, examples. – Moscow, Librokom. – 2013. – 352 p. (in Russian).
Melnikov B. The equality condition for infinite catenations of two sets of finite words // International Journal of Foundation of Computer Science. – 1993. – Vol. 4. No. 3. – P. 267–274.
Refbacks
- There are currently no refbacks.
Abava Кибербезопасность IT Congress 2024
ISSN: 2307-8162