Simulation of algorithms for estimation energetic parameters of spacecraft onboard optoelectronic devices

Evgeny Eremin


During the operation of on-board optoelectronic devices and spacecraft systems, there is a need to evaluate such energy parameters as sensitivity and dynamic range. These parameters directly affect the possibility of detecting space objects, as well as obtaining non-coordinate information on them by monitoring systems of near-Earth space, including space debris. The sensitivity and dynamic range of on-board optoelectronic devices are estimated using observations of stars for which the results of photometric studies with known accuracy are available. This article describes algorithms for assessing the sensitivity and dynamic range of on-board optoelectronic devices. These algorithms use an instrumental photometric standard, which based on the methods of system analysis, to evaluate the energy characteristics of the on-board optoelectronic devices with a given accuracy under various operating modes and background-signal conditions of observation. Experimental simulation model developed for the quality estimation of described algorithms. This model based on some programs of the Astromatic project and the implementation of described algorithms. The simulation results presented. The materials of the article can be useful in planning the practical operation of on-board optoelectronic devices of space systems and spacecraft.

Full Text:

PDF (Russian)


Eremin E.O., Kharlamov G.U. Instrumental'nyj fotometricheskij standart dlya bortovyh optiko-elektronnyh priborov kosmicheskih sistem monitoringa okolozemnogo prostranstva // Trudy MAI. 2019. № 104. URL:

Eremin E.O. Ocenka dinamicheskogo diapazona optiko-elektronnyh priborov pri nablyudenii kosmicheskih ob"ektov na fone nebesnoj sfery // Fundamental'nye problemy radioelektronnogo priborostroeniya. – 2015. – T. 15. – №. 5. – s. 86-89.

Zavarzin, V.I. Ocenka pronicayushchej sposobnosti priyomnyh kanalov optiko-elektronnyh sredstv sputnikovoj astronomii / V.I. Zavarzin, V.A. Sautkin // Nauchno-tekhnicheskij zhurnal «Kontenant». - 2014, T.13, №1. – s.50-56.

V. Straižys. The method of synthetic photometry. Baltic Astronomy, 1996, vol. 5, p.459-476.

A. J. Pickles. A Stellar Spectral Flux Library: 1150-25000 Å. The Publications of the Astronomical Society of the Pacific, Volume 110, Issue 749, pp. 863-878, 2006.

Benko T, Felix B. How to Scientifically Determine CCD Gain and Offset Settings, 2011

McGillem, C. D.; Anuta, P. E.; Malaret, E.; and Yu, K. B., "Estimation of a Remote Sensing System Point-Spread Function from

Measured Imagery" (1983). LARS Technical Reports. Paper 81.

Kruzhilov I.S. O vliyanii otnositel'nogo razmera izobrazheniya na pogreshnost' opredeleniya koordinat // Komp'yuternaya optika. - 2009, t. 33, №2, - s.210-215.

Bertin 2009: SkyMaker: astronomical image simulations made easy, Memorie della Societa Astronomica Italiana Supplement 80, 422

Bertin, E. & Arnouts, S. 1996: SExtractor: Software for source extraction, Astronomy & Astrophysics Supplement 317, 393

Jones, D. O., Scolnic, D. M., & Rodney, S. A.2015, PythonPhot: Simple DAOPHOT-type photometry in Python, Astrophysics Source Code Library, ascl:1501.01

P. Stetson, DAOPHOT- A computer program for crowded-field stellar photometry, 1987, PASP, v. 99, p.191-222.

Bertin 2011: Automated Morphometry with SExtractor and PSFEx, ASP Conference Series, Vol. 442, 2011, Ian N. Evans, Alberto Accomazzi, Douglas J. Mink, and Arnold H. Rots, eds., p. 435.


  • There are currently no refbacks.

Abava  Absolutech Convergent 2020

ISSN: 2307-8162