### Synthesis of the probabilistic collision avoidance system in the domain of dynamic objects motion

#### Abstract

#### Full Text:

PDF (Russian)#### References

Barraquand J., Latombe J. C. Robot motion planning: A distributed representation approach // The International Journal of Robotics Research. – 1991. – Vol. 10, no. 6. – P. 628–649.

LaValle S. M. Planning algorithms / – Cambridge university press, 2006. – 842 p.

Kapadia M., Singh S., Hewlett W., Reinman G., Faloutsos, P. Parallelized egocentric fields for autonomous navigation // The Visual Computer. – 2012. – Vol. 28, no. 12. – P. 1209–1227.

Park J. W., Kwak H. J., Kang Y. C., Kim D. W. Advanced fuzzy potential field method for mobile robot obstacle avoidance / // Computational intelligence and neuroscience. – 2016. – Vol. 2016.

O’Donnell P. A., Lozano-Pérez T. Deadlock-free and collision-free coordination of two robot manipulators // ICRA. Vol. 89. – 1989. – P. 484–489.

Jansen M. R., Sturtevant N. R. Direction Maps for Cooperative Pathfinding. // AIIDE. – 2008. – Vol. 2008. – P. 185.

Hennes D. et al. Multi-robot collision avoidance with localization uncertainty // AAMAS. – 2012. – P. 147–154.

Alejo D., Cobano J. A. Heredia G. Reactive method for collision avoidance in industrial environments // Journal of Intelligent & Robotic Systems. – 2016. – Vol. 84, no. 1–4. – P. 745–758

Diveev A. I., Shmalko E. Y. Self-adjusting control for multi robot team by the network operator method // 2015 European Control Conference (ECC). – IEEE. 2015. – P. 709–714.

Diveev A. I., Shmalko E. Y. Optimal motion control for multi-robot system by multilayer network operator // 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA). – IEEE. 2016. – P. 2164–2169.

Diveev A., Shmalko E. Hybrid evolutionary algorithm for synthesized optimal control problem for group of interacting robots // 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT). – IEEE. 2019. – P. 876–881.

Diveev, A., Hussein, O., Shmalko, E., Sofronova, E. Synthesis of Control System for Quad-Rotor Helicopter by the Network Operator Method // Proceedings of SAI Intelligent Systems Conference. –– Springer. 2020. – P. 246–263.

Diveev. A. Cartesian Genetic Programming for Synthesis of Control System for Group of Robots // 2020 28th Mediterranean Conference on Control and Automation (MED). – IEEE. 2020. – P. 972–977.

Dubovitskiy A. Y., Milyutin A. A. Extremum problems in the presence of constraints // Journal of numerical mathematics and mathematical physics. – 1965. – Vol. 5, no. 3. – С. 395–453.

Dotsenko A. V. Automatic synthesis of a continuous dynamic stabilization system based on artificial neural networks// Herald of the Bauman Moscow state technical university, Instrument Ingineering. – 2020. – no.3. – С. 66-83.

Bishop C. M. Mixture density networks. – 1994.

Wang M., Lu S., Zhu D., Lin J., Wang Z. A high-speed and low-complexity architecture for softmax function in deep learning //2018 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS). – IEEE, 2018. – С. 223–226.

Salimans T., Ho J., Chen X., Sidor S., Sutskever I. Evolution strategies as a scalable alternative to reinforcement learning // arXiv preprint arXiv:1703.03864. – 2017.

Wierstra D. et al. Natural evolution strategies // The Journal of Machine Learning Research. – 2014. – Vol. 15, no. 1. – P. 949–980.

Dubins L. E. On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal positions and tangents // Amer. J. Math., 1957, Vol. 79. P. 497-516.

### Refbacks

- There are currently no refbacks.

Abava Кибербезопасность FRUCT 2024

ISSN: 2307-8162