On the algorithmic solvability of mutually unbiased bases problem

Nikolay Nadirashvili


The concept of mutually unbiased bases is studied from the finite point of view and it is shown that the inexistence hypotheses can be verified by means of finite algorithms. The sketch of the algorithm is presented.

Full Text:



Ferenc Szollozi, “Construction, classification and parametrization of

complex Hadamard matrices ” arXiv:1110.5590v1, 2011.

Wojciech Tadej, Karol Zyczkowski, “A concise guide to complex

Hadamard matrices”, http://arxiv.org/abs/quant-ph/0512154v2, 2006.

Stefan Weigert, Michael Wilkinson, “Mutually Unbiased Bases for

Continuous Variables”, arXiv:0802.0394v2, 2008.

Ingemar Bengtsson, Wojciech Bruzda, Asa Ericsson, Jan-Ake

Larsson, Wojciech Tadej, Karol Zyczkowski “Mutually unbiased

bases and hadamard matrices of order”, arXiv:quant-ph/0610161v3,

Paul Butterley, and William Hall, “Numerical evidence for the

maximum number of mutually unbiased bases in dimension six”,

arXiv:quant-ph/0701122v2, 2007.

Thomas Durt, Berthold-Geord Englert, Ingemar Bengtsson, Karol

Zyczkowski, “On mutually unbiased bases”, International Journal of

Quantum Information 8, 2010.


  • There are currently no refbacks.

Abava  Кибербезопасность MoNeTec 2024

ISSN: 2307-8162