Modeling nonlinear evolutionary competing processes on the basis of the Lotka – Volterra modification

T. G. Vozmishcheva


The models of nonlinear competing processes on the base of the modification of the Lotka – Volterra system: the Richardson arms race model, the Lanchester war or battle model, the predator-prey model are presented and studied in the article. The qualitative analysis and also numerical calculation of evolutionary trajectories of system for various values of parameters is carried out. The comparative analysis of the classical and modified models on the basis of the built graphs of solutions of the system of differential equations is presented as well. Various parameters of the system of differential equations which cover practically all the set of possible beneficial and adverse effect on evolutionary trajectories are considered. Due to the dynamic simulation the values and relations of parameters which lead to the cardinal changes in evolution of the modified models are defined. Thus, the conditions under which it is possible to avoid the growth of arms race, that is, the armed conflict, are received. For the modified predator-prey model the conditions under which the biocenosis restoration is possible even at negative nonlinear terms are written down.

Full Text:



Vol’terra V. Matematicheskaja teorija bor'by za sushсhestvovanie [The mathematical theory of struggle for existence]. Moscow, Science, 1976, 286 p. (in Russ.).

Kingsland S. Alfred J. Lotka and the origins of theoretical population ecology / Proceedings of the National Academy of Sciences Aug 2015. Vol. 112, № 31. P. 9493-9495.

Nikol’skij M.S. Ob upravlyaemykh variantakh modeli L. Richardsona v politologii [On the controllable variants of Richardson’s model in political science] / Tr. IMM UrO RAN, 2011. Vol 17, no. 1. pp. 121-128 (in Russ.).

Bratus' A.S., Novozhilov A.S., Platonov A.P. Dinamicheskie sistemy i modeli v biologii [Dynamical systems and models in biology] / M.: FIZMATLIT, 2009 (in Russ.).

Riznichenko G.Yu., Rubin A.B. Matematicheskie metody v biologii i ekologii. Biofizicheskaya dinamika produktsionnykh protsessov [Mathematical methods in biology and ecology. Biophysical dynamics of productional processes] / M.: Yurayt, 2018 (in Russ.).

Jedvards Ch.G. Differencial'nye uravnenija i kraevye zadachi: modelirovanie i vychislenie s pomoshсh'ju Mathematica, Maple i MATLAB. 3-e izdanie [Differential equations and boundary problems: modeling and calculation by means of Mathematica, Maple and MATLAB]. Moscow, Publishing House Vil'jams, 2008, 1094 p.

Brodskij Ju.I. Lekcii po matematicheskomu i imitacionnomu modelirovaniju [Lectures on mathematical modeling and simulation]. Moscow, Berlin: Direct media, 2015, 240 p. (in Russ.)

Arnol'd V.I. «Zhestkie» i «mjagkie» matematicheskie modeli [«Hard» and «Soft» mathematical models]. Moscow Center for Continuous Mathematical Education, 2004. 32 p. (in Russ.)

Vozmishcheva T. The limit passage of space curvature in problems of celestial mechanics with the generalized Kepler and Hooke potentials // Astrophysics and Space Science. 2016. Vol. 361, № 9. P. 1-7.

Vozmishcheva T.G. Traektornaya ekvivalentnost' zadachi dvukh tsentrov v ploskom prostranstve, v prostranstve Lobachevskogo i na sfere: predel'nyy perekhod (chast' 1) [Trajectory equivalence of the two-center problem in the flat space, in the Lobachevsky space and on a sphere: the limit passage (part 1)]. Vestnik IzhGTU imeni M.T. Kalashnikova, 2015, Vol. 18, no. 2, pp. 112 –116 (in Russ.).


  • There are currently no refbacks.

Abava  Absolutech Convergent 2020

ISSN: 2307-8162