
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 3, no. 9, 2015

 26

Abstract— C/C++ programs often suffer from memory

corruption bugs. Over the years, numerous tools were

developed to help with their detection. A recent addition is

AddressSanitizer (ASan) - an extraordinarily fast runtime

checker with a good coverage of various types of bugs.

This paper describes our experience in integration of ASan

technology into large-scale software products: Tizen

distribution and Linux kernel. The tool has already found

around a hundred of serious memory bugs in various Tizen

applications and in mainline Linux kernel.

Keywords—runtime memory checker, AddressSanitizer,

KernelAddressSanitizer.

I. INTRODUCTION

Memory corruption is an error which occurs when

application unintentionally reads or writes data past the

bounds of proper memory region. Typical examples are

buffer overflows and use-after-free errors. Examples of such

errors are given in Fig. 1.

int x[10];

for (int i = 0; i <= 10; ++i)

 x[i] = 0; // Buffer overflow @ i == 10

char *p = malloc (1);

free (p);

p[0] = 0; // Use-after-free

Fig. 1. Examples of memory errors (buffer overflow and

use-after-free).

Various approaches are used to detect memory errors at

early development stages, including code reviews, static

analysis, managed languages, etc. [1]. One important class of

tools is runtime memory checkers (“memory debuggers”)

which combine high precision with cheap integration costs.

A relatively new addition to runtime checkers family is

AddressSanitizer (or shortly ASan) [2]. ASan is unique in

that it has only 2x performance overhead and consumes 10%

of memory which is unparalleled by prior technology

(Valgrind, ASan’s most direct and popular competitor,

incurs an overhead of 30x! [3]). ASan fully supports multi-

threading which is important for high-performance server

applications.

Manuscript received August 21, 2015.
Yury Gribov (y.gribov@samsung.com), Maria Guseva

(m.guseva@samsung.com) and Andrey Ryabinin
(a.ryabinin@samsung.com) are with Samsung R&D Institute Russia, 12-1
Dvintsev st., Moscow, Russia, 127018

 JaeOok Kwon, SeungHoon Lee, HakBong Lee and ChungKi Woo are
with Samsung Electronics Company

ASan detects many classes of bugs. Notably it has been

proven to find the infamous Heartbleed exploit in OpenSSL

[4]. Current version of ASan is capable of detecting buffer

overflows (in stack, heap and static memory), use-after-free

and use-after-return, initialization order fiasco, memory

leaks, trivial heap errors (double free, free-delete mismatch,

etc.) and some other errors (memcpy parameter overlap,

etc.). Summary comparison of ASan and other memory tools

see in Table I.

Table I. Comparison of memory tools.

Feature \ Tool Valgrind

Guard page

tools (DUMA,

Efence, etc.)

ASan

Technology
Dynamic

instrumentation
Dynamic

instrumentation
Compile-time

instrumentation

Supported
platforms

Linux, Mac All All

Overhead 20x 1x 2x

Multithreading
support

No Yes Yes

Heap overflow Yes Yes Yes

Global overflow No No Yes

Stack overflow No No Yes

Use-after-free Yes Yes Yes

Use-after-return No No Yes

Memory leaks Yes Yes Yes

ODR, init order
violation

No No Yes

AddressSanitizer is based on a classic shadow memory

approach to memory error detection which is also used in

tools like Valgrind or kmemcheck. Shadow memory is a

special memory region in program’s memory which holds

information about state of user’s data i.e. which memory

locations are unsafe to access and why [5]. ASan is using 8-

to-1 encoding (see Fig. 2) i.e. each 8-byte program word is

mapped to 1 byte of shadow memory. This encoding allows

efficient code generation particularly on 64-bit platforms

(Fig. 3).

Fig. 2. ASan memory encoding.

Fast memory debugger for large software
projects

Yury Gribov, Maria Guseva, Andrey Ryabinin, JaeOok Kwon, SeungHoon Lee, HakBong Lee,
ChungKi Woo

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 3, no. 9, 2015

 27

// Original code

Type val = *address;

//Instrumented code

char *shadow_address = 0x20000000 + (address >> 3)

char shadow_val = *shadow_address;

char last_byte = (address & 7) + sizeof(Type) – 1;

if (*shadow_val && last_byte >= *shadow_val)

 ReportError();

Type val = *address;
Fig. 3. ASan instrumentation.

Contrary to Valgrind and Purify, ASan uses compile-time

instrumentation to query and check shadow memory on each

scalar memory access. This allows for much better

optimization and removal of redundant computation

resulting in better performance. ASan runtime library also

intercepts many Glibc memory functions (memset, strcpy,

etc.) to catch invalid memory accesses in them.

To detect memory errors, AddressSanitizer pads various

program objects (heap, stack and global variables) with

poisoned (i.e. marked as inaccessible in shadow memory)

redzones. Buffer overflow would cause program to access

poisoned region and trigger runtime fault with a helpful error

message. Poisoning/un-poisoning is done

• for global variables – at program startup (via

special hooks inserted by compiler)

• for stack variables – in function prologue/epilogue

(via special instrumentation code inserted by

compiler)

• for heap variables – in malloc/free and new/delete

interceptors (located in ASan runtime library)

An error message typically includes type and context of

faulty memory access and a backtrace. Example (truncated)

report is shown in Fig. 4.

$./a.out

==

==11083==ERROR: AddressSanitizer: heap-buffer-overflow

on address 0x60200000eff1 at pc 0x4007a8 bp 0x7ffd53cfb200

sp 0x7ffd53cfb1f8

WRITE of size 1 at 0x60200000eff1 thread T0

 #0 0x4007a7 in main /home/ygribov/tmp.c:3

 #1 0x7fc0b2ff9ec4 in __libc_start_main (/lib/x86_64-

linux-gnu/libc.so.6+0x21ec4)

 #2 0x400688 (/home/ygribov/a.out+0x400688)

0x60200000eff1 is located 0 bytes to the right of 1-byte

region [0x60200000eff0,0x60200000eff1)

allocated by thread T0 here:

 #0 0x7fc0b33f17df in __interceptor_malloc

(/usr/lib/x86_64-linux-gnu/libasan.so.1+0x547df)

 #1 0x400767 in main /home/ygribov/tmp.c:2

 #2 0x7fc0b2ff9ec4 in __libc_start_main (/lib/x86_64-

linux-gnu/libc.so.6+0x21ec4)

SUMMARY: AddressSanitizer: heap-buffer-overflow

/home/ygribov/tmp.c:3 main

==11083==ABORTING

Fig. 4. Example ASan report.

II. LARGE-SCALE PROJECTS SANITIZING

AddressSanitizer relies on standard and portable

mechanisms like compiler flags, runtime interception of

library functions and runtime tuning via environment

variables. They work well for isolated software packages but

may pose challenges when applied to a large software

project like complete Linux distribution.

Several months ago we have successfully applied

AddressSanitizer to ARMv7-based embedded system with

Tizen software stack. Tizen is a Linux distribution aimed at

consumer electronics devices (mobile phones, TVs, IVI,

etc.) [6]. It is a typical example of modern software platform

and we thus believe that our experience would be helpful for

maintainers of other distributions (like Ubuntu or Android)

who consider using ASan in their work.

Below we describe challenges met during sanitizing Tizen

and how they were solved.

A. Integration

During ASan integration to Tizen we generally found that

instead of doing things “properly” by modifying the platform

build system core or package build scripts to match our

requirements, it was much more efficient to work around

arising problems.

Such basic task as modifying compiler flags for several

thousands of packages in a scalable way may be non-trivial

because each package may modify or override compiler

flags in unique way. Thus modification of default compiler

flags was achieved by a crude compiler wrapper script (see

Fig. 5) which never failed us since then. In addition to

forced enablement of ASan, we also disabled common

symbols and Glibc fortification as both cause ASan to miss

important classes of bugs (erroneous accesses to global

variables or via standard memory functions like memcpy).

#!/bin/sh

Use readlink in order to follow symlinks if any

REAL=$(readlink -f $0)-real

if ! echo "$@" | grep -q ‘__KERNEL__\|-nostdlib’; then

 $REAL "$@" -fsanitize=address -fno-common –

U_FORTIFY_SOURCE

else

 $REAL "$@"

fi
Fig. 5. Compiler wrapper for enabling ASan.

Once integration to build system has been finished and we

have successfully rebuilt most part (actually 99.5%) of

distribution with ASan, we were finally able to run the

system. However in runtime we initially faced another issues

like false error messages. We discovered their cause in

several ARM-specific bugs on compiler side. Once we fixed

them ASan proved to be extremely robust.

We also added some minor target-specific modification.

E.g. in our case sanitized executables ran pretty early during

system boot when proc partition (required by ASan to

determine process memory layout, etc.) was not available.

To address this, we updated ASan initialization code to

mount /proc if necessary.

B. Instrumentation Overhead

Next to pure integration issues stands instrumentation

overhead. Even though ASan is much more efficient than

Valgrind, it provokes users to apply much more aggressively

in new contexts (e.g. analyze full system under ASan). CPU

overhead of 2x-3x is typically acceptable as it only results in

moderate increase of QA time. Memory overhead is much

more important – it may be unbearable for mobile devices

with their limited amounts of RAM.

After initial experiments we quickly ran into problems

with increased memory consumption. Our target devices

were designed with particular usage scenarios in mind so

amount of available RAM was limited and there was no

secondary storage for swap. We attacked this problem from

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 3, no. 9, 2015

 28

different angles.

First of all, we used available ASan runtime options to

reduce memory to minimum. ASan customization is done at

runtime through environment variable ASAN_OPTIONS.

We updated Tizen initialization scripts (/sbin/init.wrapper)

to set the necessary options for all system processes:

• malloc_context_size=2,fast_unwind_on_malloc=0

(cap backtrace collection for malloc which is

otherwise too slow and memory-heavy on most

platforms)

• quarantine_size=$((1<<15)) (reduce size of

quarantine to 32K to reduce memory consumption)

• start_deactivated=1 (do not enable ASan in non-

sanitized programs)

In addition to above tweaks, we also enabled large swap

on zram device [7]1.

An alternative solution to memory overhead (which was

quickly adopted by users) is to split full distribution to

smaller parts and concentrate on most critical parts first (e.g.

set uid daemons or apps which access private user data). By

applying ASan to a subset of distribution at a time we could

arbitrarily trim memory overhead at the cost of increased

QA time (as QA tests will now have to be run N times, once

per each chunk). Unfortunately such partitioning may in

practice cause false negatives2. For example if we apply

ASan to an executable which links against library which was

not sanitized, then errors inside library code will go

undetected. This happens due to nature of ASan’s

instrumentation which requires that all source code (i.e.

executable and all dependent libraries) is sanitized to

achieve 100% error coverage. We are currently trying to

automatically determine the minimal subset of distribution

that would include all packages selected by user and all their

dependencies (direct and transitive) required to detect all

possible errors.

We also reduced consumption of virtual memory by

removing kernel area image from shadow memory region

and trimming too aggressive memory allocation in ASan

upstream (see Fig. 6).

Resource Improvement

Code size 25%

Virtual memory 30%

Performance 15%

Fig. 6. Achieved ASan overhead reduction.

Originally we didn’t pay much attention to CPU overhead

but once users started to use ASan more, we ran into

limitations for high-performance workloads. On ARMv7

cores we were able to obtain a 25% code size reduction and

a ~15% performance improvement on high loads by

carefully tuning ASan instrumentation to our 32-bit ARM

cores (we used ARM’s dominated conditional comparisons).

Example of instrumentations before and after our

optimization is given in Fig. 7.

1 We also plan to experiment with swapping to USB and network disks.
2 I.e. some errors may be missed.

Fig. 7. Optimized instrumentation code.

C. Other Limitations

ASan’s internal complexity is another source of issues. Asan

code has many non-obvious limitations, loosely described (if

at all) in documentation, mailing lists or even code

comments. These should be carefully studied to ensure that

important errors don’t go undetected.

For example an important and non-obvious source of ASan

limitations are custom memory allocators used by many

important packages e.g. OpenSSL or Glib2 [9]. By design,

without additional assistance from user ASan can only detect

errors in dynamic memory allocated via standard malloc/free

or new/delete allocators. Any custom memory handling (e.g.

simple free list on top of mmap) is thus unknown to ASan

and most use-after-free or buffer overflow errors there will

go undetected. Some libraries provide means to disable

custom allocators (e.g. G_SLICE=always_malloc setting in

Glib2) but for the most part this work has to be done by

Tizen application developers who are interested in

expanding coverage of their code.

Finally, some ASan’s design choices may further complicate

its usage. The most unpleasant one is the decision to abort

execution after single error detection. This approach

aggressively motivates developers to fix bugs in their code

but at the same time significantly limits number of errors that

can be detected during a single QA run. Given that asking

developers to fix code, rebuilding and reinstalling updated

firmware may take anything from minutes to days, this may

significantly increase QA cycle.

To avoid this we enabled new ASan runtime flag

“keep_going” telling to continue execution after reporting an

error instead of aborting. This allowed us to significantly

increase our error detection rate and thus reduce integration

costs. Looking back, we can confirm that lack of this feature

would have significantly complicated adoption of ASan for

QA. This flag is currently not available in mainline ASan

(mainly due to maintainer’s opposition) but we’d like to

commit it in future.

D. Ideas For Improving Test Coverage

Once ASan was adopted and developers started to use it

on a regular basis, we found that number of error detections

has quickly diminished. This of course didn’t mean that our

software became bug-free but rather that coverage of our

existing QA test suites was too narrow and they began to

limit ASan’s ability to detect errors. We conclude that

dynamic checkers like ASan heavily depend on existence of

aggressive and evolving test systems.

To detect more errors, we are currently exploring ways to

increase our test coverage. One obvious approach is usage of

fuzzing tools which have become very popular in recent

years [8]. In addition to fuzzing, we also plan to strengthen

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 3, no. 9, 2015

 29

existing ASan checks by implementing more Glibc

interceptors (e.g. bcopy, strrchr, etc.) and to experiment with

more aggressive (and memory-hungry) ASan checks like

detect_stack_use_after_return and

check_initialization_order. We’d also like to extend ASan to

cover less trivial constructs like va_args and thread-local

storage.

III. ASAN SOLUTION FOR LINUX KERNEL: KASAN

In addition to Tizen, we also applied ASan to verification of

Linux kernel. The solution named KernelAddressSanitizer

(KASan) has been proposed by one of the authors to kernel

community and successfully merged to mainline in version

4.0 [10].

Compiler instrumentation for kernel case remains

practically unchanged but runtime support has to be

rewritten from scratch. Checking of global and stack

variables is more or less similar but dynamic memory

allocation is quite different. For one thing, kernel does not

use standard malloc/free interface but rather several different

allocators meant for different purposes:

• Slab allocators (SLAB, SLOB, SLUB)

• Vmalloc

• Per-CPU variables

• Page allocator

• Memory pools

For now we have only added support for SLUB allocator

as this seems to be the most popular implementation of Slab

for now.

Initially, all objects allocated on SLUB-page are poisoned

by KASan. Later, when SLUB-object is allocated, memory

containing the object body is un-poisoned and the rest (e.g.

SLUB-metadata) is marked poisoned (Fig. 8).

Fig. 8. Sanitizing SLUB allocator.

In recent versions of kernel we also added support for

memory pools which are a simple construct on top of Slab.

Support for other allocators (e.g. vmalloc) and memory

quarantine (to detect use-after-free bugs) is pending.

Apart from allocators, another major difference between

userspace and kernel ASan is the bootstrap process.

Instrumented code cannot be executed before shadow

memory is initialized. In case of userspace, shadow memory

setup is handled by runtime library before application start.

Obviously we cannot do the same for kernel because the

KASan runtime is a part of the kernel itself. Our solution is

to have small un-instrumented code to setup the shadow.

This code has to be executed before invocation of any

instrumented code, therefore it executes at early stage of

boot process. Proper initialization of shadow memory cannot

be performed at such an early step – instead a special

“shadow stub” is used. The stub is represented by a single

zero page mapped to entire shadow memory region. After

stub is set up, instrumented kernel is able to boot. No errors

are detected at this stage as shadow memory is filled with

zeros (which effectively means that no memory tracking is

done). After linear memory mapping is ready, proper

shadow memory can be set up to replace the stub. The

sequence of shadow stub and shadow memory region

initialization is shown at Fig. 9.

Fig. 9. Usage of “shadow stub” until the shadow memory

is correctly initialized.

Compiler is able to instrument only C and C++ code. In

opposite to most of userspace applications Linux kernel

includes a lot of inline assembly code accessing memory.

Thus, invalid accesses initiated by assembly code cannot be

detected by KASan. To resolve the problem it is necessary

to instrument most frequently used assembly functions

manually. The functions are listed at Fig. 10.

atomic_*()

atomic64_*()

test_*_bit()

clear_bit()

xchg()

cmpxchg()

cmpxchg_double*()

Fig. 10. Frequently used inline assembly functions.

ASan supports two types of code instrumentation. Outline

instrumentation (historically the first) implies that every

memory access is annotated with a function call to check

shadow memory. For inline instrumentation, compiler

directly inserts checking instructions before memory

accesses. This can be much faster (up to 2x on some

workloads) but increases code size.

Generally KASan has 3–4 times performance overhead.

The chart in Fig. 11 gives the idea of the overhead by

comparing performance of ‘netperf -l 30’ command in

normal kernel against instrumented ones. By default,

sanitized kernel is built with outline instrumentation but this

can be changed during kernel config.

Fig. 11. ASan instrumentation overhead in kernel.

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 3, no. 9, 2015

 30

KASan is currently implemented only for x86_64 target

but we work on ports to ARM and AArch64.

A number of Linux kernel issues were found with the help

of KASan. They include out-of-bounds pointer dereferences

in integer ID management library, use-after-free issues in

rmap and aio subsystems, various bugs in generic network

layer, out-of-bounds access issues in SCSI, smack and

scheduler code.

The most known bug found using KASan is vulnerability

in l2tp network layer allowing user privilege escalation

(CVE-2014-4943). A fix to the issue can be evaluated as the

most significant kernel fix of last seven years.

IV. CONCLUSION

While AddressSanitizer is a powerful and mature technology

its integration to production software systems may not be

easy as we discovered on examples of Tizen distribution and

Linux kernel. Finally when AddressSanitizer is successfully

integrated into QA process it undoubtedly helps to improve

software quality by detecting memory corruptions. This

article demonstrates problems we faced during ASan

integration and provides technical solutions and some ideas

for further improvements in this area.

REFERENCES

[1] D. A. Wheeler, "How to Prevent the next Heartbleed," 29 April 2014.
[Online]. Available:
http://www.dwheeler.com/essays/heartbleed.html.

[2] K. Serebryany, "AddressSanitizer: A Fast Address Sanity Checker,"
in USENIX, 2012.

[3] K. Serebryany, "Comparison of Memory Tools," 04 July 2014.
[Online]. Available: https://code.google.com/p/address-
sanitizer/wiki/ComparisonOfMemoryTools.

[4] H. Boeck, "How Heartbleed could've been found," 7 April 2015.
[Online]. Available: https://blog.hboeck.de/archives/868-How-
Heartbleed-couldve-been-found.html.

[5] J. S. Nicholas Nethercote, "How to Shadow Every Byte of Memory
Used by a Program," in Proceedings of the 3rd international
conference on Virtual execution environments, 2007.

[6] "Tizen on Wikipedia," 18 July 2015. [Online]. Available:
https://en.wikipedia.org/wiki/Tizen.

[7] "Zram on Wikipedia," [Online]. Available:
https://en.wikipedia.org/wiki/Zram.

[8] B.P. Miller, L. Fredriksen, and B. So, "An Empirical Study of the
Reliability of UNIX Utilities," in Communications of the ACM 33,
1990.

[9] X. Chen, "MemBrush: A practical tool to detect custom memory
allocators in C binaries," in 20th Working Conference on Reverse
Engineering, Koblenz, 2013.

[10] M. Larabel, "KernelASan: Bringing Address Sanitizer To The Linux
Kernel," 18 July 2014. [Online]. Available:
http://www.phoronix.com.

