
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 4, 2025

77



Abstract—Event-driven programming (EDP) is a

programming paradigm in which actions are performed after

notification of an event. The paradigm can be used to unify

control statements (as in Markov normal algorithms).

Unification consists in using only a linear sequence of

commands when programming events and their handlers. We

introduce a new look at EDP. Event-driven architecture (EDA)

for our look includes a framework, events and their handlers.

The framework consists of an event queue and its dispatcher,

event loop handlers as threads. EDA has the following features:

one input event is transformed into one output event, one event

is processed by one handler and vice versa, subscription to an

event by its type, handler searching by event parameters,

queue with a broker, data exchange between handlers through

events. The event is characterized by a type, input data, a

status, the parent event, a processing result. The handler

processes the event, filters processed events, and provides a

reference to the subscribed event type. The resolving handler

transforms the initiated event into a handled one. The

transformation handler initiates a new event in place of the

handled one. EDA is thread-safe due to storing state only in

events, stateless handlers, using a thread-safe queue,

sequentially processing events one after another. EDA was

programmed in Java. The program includes 3 loop statements

(including 1 in the thread pool) and 4 conditional statements.

All these statements are in the framework. Only a linear

sequence of commands is used in events and handlers.

Keywords—Event, event-driven programming, event-driven

architecture, event handler, event loop, Markov normal

algorithms, Java, multithreading.

I. COULD CONTROL STATEMENTS BE UNIFIED?

(INTRODUCTION & MOTIVATION)

Markov normal algorithm [1] is an algorithmic model. The

normal algorithm is executed on a word consisting of

alphabet symbols in the following order. The normal

scheme of the algorithm is scanned from top to bottom, and

a substitution is selected from it, the left part of which is

contained in the word . If the substitution is found, then the

first occurrence of the substring in the word is replaced

by the substring , and the scan of the scheme begins again.

A substitution is a single statement of the Markov normal

algorithm. Conditions and loops are taken out in the order of

execution.

Could imperative control statements be unified?

Manuscript received January 15, 2024.
A. Prutzkow is with the Ryazan State Radio Engineering University,

390005, Gagarin str., 59/1, Ryazan, Russia, and with Lipetsk State

Pedagogical University, 398020, Lenin str., 42, Lipetsk, Russia (e-mail:
mail@prutzkow.com).

II. THE PURPOSE OF THE STUDY

The purpose of the study is to simplify the program structure

by unifying the control statements used. At this stage of the

study, we realistically consider the use of only a linear

sequence of commands as unification of statements.

We'll use event-driven programming (EDP) to achieve the

purpose.

We state the study in original manner. The section (except

this one) headers are questions, the section texts are

answers.

III. WHAT IS EVENT-DRIVEN PROGRAMMING?

A. What Are Types of Message?

Class objects, program modules, and network nodes interact

through messages of three types (table 1, adapted from [2]):

• commands – requests to perform operations;

• events – notifications about actions that have occurred;

• queries – requests for data.

Messages are specific within a particular system or

domain.

TABLE 1. MESSAGE TYPES AND THEIR FEATURES

Message Type Behavior / state change Response

Command Requested to happen Result or status

Event Just happened Never

Query None Data

B. How to Define Event-Driven Programming?

EDP is a programming paradigm in which one or more

software components execute in response to receiving an

event notifications (adapted from [3]).

EDP can be considered as an architectural style [3]. An

architectural style is a specialization of element and relation

types, together with a set of constraints on how they can be

used for a family of architectural instances (combined from

[4, 5]).

C. Is There Event-Driven Architecture?

EDP is a base of event-driven architecture (EDA).

Depending on the task being solved, EDA has variations [6,

7, 8, 9, 10].

In addition to the event, there are mandatory elements in

any variation:

• event source;

• event transmission channel / event listener;

• event handler.

A source initiates an event. The event is transmitted over

a channel or the source notifies a listener of the event. The

transmission channel is the event queue. The transmission

channel or the listener passes the event to the handler that

Event-Driven Programming

as a Way to Unify Control Statements

Alexander Prutzkow

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 4, 2025

78

processes it. Receiving events from sources and passing

them to handlers constitutes the event loop.

EDA has the following attributes (adapted from [11]):

• the state of the software system changing after event

processing;

• implicit sequence of command to solve the problem

(also in [12]);

• loosely coupling (also in [3, 13, 14]); sources and

handlers are only associated with the event transmission

channel / event listener; sources and handlers are not

coupled to each other; sources and handlers can be

added independently of other elements [15];

• decentralized control; multiple sources can trigger

events (also in [13]).

EDA is discussed in detail in [3, 14, 16].

D. When is Event-Driven Programming Used?

There are the following use cases of EDP:

• processing user actions in the graphical interface [17,

18];

• microservice architecture [19, 20];

• implementation of the Observer pattern [21] (and the

MVC pattern [18]);

• software libraries: parsing XML files using Simple API

for XML (SAX) [22], data exchange over the network

using Twisted [23].

The reasons for using EDP are the following (adapted

from [3]):

• the system already has events;

• the operation of the system can be reduced to

processing a sequence of events in a natural way (for

example, processing requests by a web server);

• the system must be expandable, scalable, with weak

coupling of modules.

E. Where Did Event Driven Programming Come from?

We didn’t identify a origin for EDP clearly. There are three

versions of its origin (table 2).

TABLE 2. VERSIONS OF THE ORIGIN

OF EVENT-DRIVEN PROGRAMMING

Author(s)

of version

First publication

on event-driven programming

Faison T. [16] Krasner G. and Pope S., 1988 [24]

Ferg S. [25] Yourdon E. and Constantine L., 1978 [26]

Tucker A. and

Noonan R. [18]

Stein L.A., 1999 [27]

F. What Else Do We Know about Event-Driven

Programming?

Concepts of EDP could be defined by temporal logic [14,

28]. The standard implementation with callbacks can be

explained in temporal sense as ̅̅̅ ̅̅ [28].

EDP can be combined with genetic programming [29].

Both events and genetic functions are labeled with evolvable

tags. When an event arises, the function with the closest

matching tag is triggered.

Analysis of event-based style variations showed that

middleware infrastructures (not necessarily event-based)

implicitly define architectural (sub)styles [15].

Event handlers (called event procedures) have very low

reusability [30]. There is no simple way to pass data

between handlers. The diagram of the relationships between

events, handlers, and the general procedures they call does

not provide a clear understanding of the solution to the

problem. Instead of an event loop, the callback or inverse

control programming paradigm could be used, as well as

Java language synchronization [31].

The TaskJava backward-compatible extension to Java

transforms program fragments into a switch statement. Each

case of this statement is an event handler [32]. The scope of

the extension is a method, not the entire program. The EDP

language Jadescript is designed to implement agents in

multi-agent systems [33].

Events are used in programming languages with

multithreading. Tame introduces four related abstractions

for handling concurrency [34]. Event is one of them. Eve is

a programming language with shared memory within the

event loop [35]. AmbientTalk is a programming language to

compose objects as services in mobile networks [36]. Events

are messages. The WS-BPEL language in service-oriented

architecture was extended by EDA concepts [37]. SUNNY

is a model-based programming paradigm for designing and

developing interactive event-driven systems [38]. The

paradigm is structured around models of data, network,

event, etc. Protothread is a programming abstraction to write

an event-driven program in thread-like manner [39]. An

extension of OpenMP combines asynchronization and

parallelization [40]. The extension facilitates the

development of event-driven programs, especially for GUI

applications, to achieve better responsiveness and event

handling acceleration.

P is a domain-specific language for writing asynchronous

event-driven programs [41]. State machines declared in a

program communicate with each other asynchronously

through events. Depending on the state of the machine,

events that transit the machine to another state are ignored,

or are not removed from the event queue. P was a tool to

design the USB Hub in Windows 8.

In the Rhapsody tool events change the state of class

objects [42]. Objects are linked. When the state changes, a

step is executed. A step is composed of microsteps. There is

an IDE to visualize objects, their states and relationships

with other objects.

EDP can be used for packet processing in network

devices and in software-defined networking. EDP is an

approach to write correct and efficient programs for

distributed systems [43]. All network algorithms are event-

driven [44].

Testing event-driven programs requires specific

approaches to writing unit tests [45].

EDP is criticized. Threads are no worse than for events

for high concurrency servers [46]. Threads, when

programmed correctly, have good performance and don’t

limit control flow, are not difficult to synchronize.

The results of these studies will be used in our new look

at EDP.

IV. WHAT DOES A NEW LOOK AT EVENT DRIVEN

PROGRAMMING CONSIST IN?

We introduce a new look at EDP.

EDA has following structure (fig. 1).

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 4, 2025

79

Input

Event

Output

Event Event Handlers

Event Queue

Event Queue DispatcherEvent
External Event

Source

Event Loop Handlers (Threads)

Fig. 1. A structure of the new look event-driven architecture

Events are stored in a queue. Events are pushed and

pulled by a queue dispatcher. The event loop is implemented

in event loop handlers. Event loop handlers are threads.

EDA consists of:

• framework (the event queue, the event queue

dispatcher, the event loop handlers, the abstract event

and the abstract event handler);

• events and their handlers.

The sources of events fall into two types:

(1) external sources;

(2) transformation event handlers (defined further).

Events are processed by handlers.

External sources interact with the event queue dispatcher.

Events from external sources may require an adapter to cast

the event to a known type.

The look has the following features:

• one input event is transformed into one output event;

• one event is processed by one handler and vice versa;

• subscription to an event by its type;

• searching a handler by event parameters;

• queue with a broker (according to the classification in

[47]);

• data exchange between handlers via events.

V. WHAT IS AN EVENT?

A. What characterizes an event?

The event has the following properties:

• type;

• input data (processing data);

• status of processing;

• parent event;

• result of processing.

B. Why is the Event Type Introduced?

The event type is required to find its handler.

C. When is the Event Status Utilized?

Handlers are founded depending on the event status. If the

event is initiated, a resolving handler is founded (see

Section VI). If the event is handled, a transformation handler

is founded.

D. Why is the Event Processing Result Introduced?

In a sequence of events, the result of processing one event

influences the following events. The influence manifests

itself in two forms:

• depending on the result, a new event is initiated;

• the result of the event is used as input for the next event.

E. Are the Parent Event and Event Hierarchy Necessary?

The sequence of events can be duplicated, for example

 . Changing the sequence entails modification of all

its duplicates that increases time complexity of maintenance.

Duplication can be eliminated by introducing composite

events. A composite event is a sequence of events. A

composite event can be part of another event. Events form

an inclusion hierarchy: from simple events to composite

ones. The hierarchy is implemented through a reference to

the parent event.

The top-level event of the hierarchy has no a parent event.

In this case, the reference to the parent event is

NULL_EVENT.

F. Why is the Event Phase at All?

Let a composite event is a sequence of events . To

determine what event should be initiated after the event is

processed, an event phase is introduced. Let the sequence of

events form phase 1, and the sequence of events

form phase 2. Then in phase 1, the event is initiated after

the event , and in phase 2, the event is initiated after the

event .

A phase isn’t a state of an event. A composite event could

have the same state in different phases. Phases are

sequential. An event is in a phase only once.

VI. WHO DOES PROCESS AN EVENT?

Handlers are in charge of event processing.

Handler is either:

• resolving – processing events and convert the event

from the Initiated status to the Handled status (fig. 2) or;

• transformation – creating and initiating a new event

based on the results of event processing (fig. 3).

Resolving handlers subscribe to the event itself, while

transformation handlers subscribe to the parent event. This

reduces the number of subscribers for lower-level events in

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 4, 2025

80

the hierarchy.

Event

Processing data

Event

Result

Event

Status: Initiated

Event

Status: Handled

Fig. 2. Changing

event properties by the resolving handler

Event A

Result

Event B

Processing data

Event A

Status: Handled

Event B

Status: Initiated

Fig. 3. Creation of an event by the transformation handler

from a handled event

VII. WHAT EVENT PROPERTIES

ARE EXHAUSTIVE FOR AN HANDLER?

A handler has a filter for the events that it can process. The

filter uses the following event properties:

• event type;

• type of parent event;

• event phase;

• event status;

• result of event processing.

VIII. ARE EVENT-DRIVEN PROGRAMMING AND

MULTITHREADING COMPATIBLE?

Events can be processed multithreaded. Threads implement

the event loop.

The introduced look at EDP is thread-safe for the

following reasons:

• using a thread-safe queue

(java.util.concurrent.LinkedBlockingQueue of the Java

programming language) as the event queue;

• storing the state of the problem solution in events; at

each moment of the program’s operation, the event is

processed by one handler that eliminates the need for

synchronization;

• handlers are stateless;

• the sequence of events is processed one after another;

this excludes the processing of the next event before the

previous one;

• events are immutable; if an event is processed, a copy

of it is created with the Handled status; when the phase

of an event changes, a new phase is created, rather than

the current one being changed (as in [48]).

These are enough reasons not to use synchronization.

IX. COULD THE LOOK AT EVENT-DRIVEN PROGRAMMING

BE IMPLEMENTED?

It is feasible to add up numbers from 1 to with our look at

EDP. The circles (fig. 4) represent events processed by the

resolving handlers. The arrows between the events represent

the work of the transformation handlers.

The problem was programmed in Java. A project can be

downloaded from the author’s website http://prutzkow.com

[49].

X. HOW IS THE LOOK PROGRAMMED?

A. How Is an Event Mapped in a Program?

An event is an abstract data class and has the following

members:

• fields of processing status (listing 1, line 6), a reference

to the parent event (line 7), and the processing result

(line 8);

• methods for getting field values (omitted from the

listing), an factory method for duplicating an event as

handled one (lines 36-48) reflectionally with an

overriding constructor (lines 18-23);

• method for switching the event phase with the

reconstruction of the phase object (lines 32-34).

Start

Message

Message

Output at

Console

i == N
sum =

= sum + i

Result

Message

Message

Output at

ConsoleE
v

en
t

is

In
it

ia
te

d

E
v

en
t

is

H
an

d
le

d

i = 1

sum = 0

i = i + 1

true

false

Fig. 4. Event flow for summing numbers from 1 to

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 4, 2025

81

Listing 1. The AbstractEvent superclass
1 public abstract class AbstractEvent {
2 private static final String DEFALT_PHASE = "Default Phase";
3
4 public static final AbstractEvent NULL_EVENT = new

AbstractEvent(AbstractEvent.NULL_EVENT) {};
5
6 private final EventHandleStatus eventHandleStatus;
7 private final AbstractEvent parentEvent;
8 private final EventResult eventResult;
9
10 private EventPhases eventPhases = new

EventPhases(List.of(AbstractEvent.DEFALT_PHASE));
11
12 public AbstractEvent(AbstractEvent parentEvent) {
13 this.eventHandleStatus = EventHandleStatus.INITIATED;
14 this.parentEvent = parentEvent;
15 this.eventResult = EventResult.NULL_RESULT;
16 }
17
18 public AbstractEvent(AbstractEvent sourceAbstractEvent,

EventResult eventResult) {
19 this.eventHandleStatus = EventHandleStatus.HANDLED;
20 this.parentEvent = sourceAbstractEvent.parentEvent;
21 this.eventResult = eventResult;
22 this.eventPhases = sourceAbstractEvent.eventPhases;
23 }
24
25 protected AbstractEvent(AbstractEvent parentEvent, List<String>

eventPhasesAsString) {
26 this.eventHandleStatus = EventHandleStatus.INITIATED;
27 this.parentEvent = parentEvent;
28 this.eventResult = EventResult.NULL_RESULT;
29 this.eventPhases = new EventPhases(eventPhasesAsString);
30 }
31
32 public void switchPhase() {
33 this.eventPhases = this.eventPhases.switchPhase();
34 }
35
36 public AbstractEvent

getHandledEvent(EventResult eventResult) {
37 Constructor<? extends AbstractEvent> constructor = null;
38 try { constructor = this.getClass().

getConstructor(this.getClass(), EventResult.class);
39 } catch (NoSuchMethodException | SecurityException e) {
40 System.err.printf("Can't get constructor reflectionally for

class %s to create a handled event. Check
%s(sourceEvent, eventResult) existence and publicity\n",
this.getClass().getCanonicalName(),
this.getClass().getSimpleName());

41 return AbstractEvent.NULL_EVENT;
42 }
43 try { return (AbstractEvent) constructor.newInstance(this,

eventResult);
44 } catch (InstantiationException | IllegalAccessException |

IllegalArgumentException | InvocationTargetException e)
{

45 System.err.printf("Can't create a handled event reflectionally
for class %s\n", this.getClass().getCanonicalName());

46 }
47 return AbstractEvent.NULL_EVENT;
48 }
49
50 // field getters
51 }

↳

The class has no methods for setting field values, so its

instances are immutable. The class has three constructors.

The first constructor (lines 12-16) is used for single-phase

initiated events.

The event class has no a separate type field. The event

type is determined from its class by the getClass method of

the Object superclass.

The abstract class declares an empty event

NULL_EVENT (line 4).

Subclasses that are concrete events have only fields,

constructors, and getters.

B. How Is an Event Handler Programmed?

An event handler is a utility class implementing the

EventHandler interface with only final fields and therefore

no state. The interface (listing 2) declares three methods and

an empty handler NULL_EVENT_HANDLER.

The interface methods define the basic actions of the

handler:

(1) the canHandle method (line 2) filters for the processing

event;

(2) the handle method (line 4) processes the input event and

initiates an output event (fig. 2 and fig. 3);

(3) the getSubscribedEvent method (line 6) returns the class

of the event that the handler should subscribe; this

method simplifies the implementation of the

subscription.

The empty NULL_EVENT_HANDLER handler (lines 8–

10) is required as the negative result of the event handler

searching.

Listing 2. The EventHandler interface
1 public interface EventHandler {
2 boolean canHandle(AbstractEvent inputEvent);
3
4 AbstractEvent handle(AbstractEvent inputEvent);
5
6 Class<? extends AbstractEvent> getSubscribedEvent();
7
8 EventHandler NULL_EVENT_HANDLER = new EventHandler() {
9 // overridden method implementation
10 };
11 }

↳

C. How Is the Event Loop Implemented in a Program?

The event loop is implemented as follows. The handler can

be subscribed to the event itself (for a resolving handler) or

to the parent event (for a transformation handler). In the

event loop, there are two handler searches: by event

(listing 3, line 1) and by parent event (line 7). If the event

handler is not found (line 2) and the parent event is empty

(line 4), the event is not processed. The result of processing

the input event is the output event (line 9, as in [19, p. 79]).

The output event is pushed into the event queue (line 10).

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 4, 2025

82

Listing 3. The event loop
1 EventHandler eventHandler =

this.eventSubscriberRegister.getEventHandler(event);
2 if (eventHandler == EventHandler.NULL_EVENT_HANDLER) {
3 AbstractEvent parentEvent = event.getParentEvent();
4 if (parentEvent == AbstractEvent.NULL_EVENT) {
5 return;
6 }
7 eventHandler = this.eventSubscriberRegister.

getEventHandler(event, parentEvent);
8 }
9 AbstractEvent outputEvent = eventHandler.handle(event);
10 this.eventQueueHandler.addEvent(outputEvent);

↳

XI. WHAT ARE THE RESULTS?

We inventory the control statements (table 4, table 3) in 26

classes. All the conditional and loop statements are in the

EDA framework. There are neither events nor event

handlers with the conditional or loop statements.

There are no tricks to avoid the conditional and loop

statements (Java Stream API, ternary operator, etc.).

TABLE 3. CONDITIONAL STATEMENT OCCURRENCES

Class Condition

EventLoopHandler Equality of the found handler and

EventHandler.

NULL_EVENT_HANDLER

(listing 3, line 2)

EventLoopHandler Equality of the parent event and

AbstractEvent.NULL_EVENT

(listing 3, line 4)

EventSubscriberRegister Capability of the handler for event

processing

EventPhases Existence of the next phase

TABLE 4. LOOP STATEMENT OCCURRENCES

Class Description

EventLoopHandler Event loop

EventSubscriberRegister Search a handler by event

ThreadPool Add threads to a pool and start them

XII. WHAT IS IN THE ISSUE? (CONCLUSION)

We conclude the following:

(a) The problem of unification of control statements is

posed, reduced to the use of only a linear sequence of

commands.

(b) EDP is a programming paradigm suitable for unification

of control statements. EDP is a base for EDA. EDA

includes an event source, an event transmission channel

or an event listener, and an event handler. The main

attributes of the paradigm are low coupling and

decentralized control.

(c) We introduced a new look at EDP. EDA includes

framework (an event queue, an event queue dispatcher,

event loop handlers, an abstract event and an abstract

event handlers), events and their handlers. The event is

characterized by a type, input data, status, parent event,

and the result of event processing. The event handler

processes the event and returns the event it is subscribed

to. The look at EDP is thread-safe.

(d) The conditional and loop statements are in the EDA

framework, but not in events and event handlers. The

control statements have been unified, as in Markov

normal algorithms. Unification of the control statements

will simplify its development and testing.

There are use cases of the results of the study:

• languages of simplified programming;

• solutions of various event-driven problems (for

example, in software for devices).

The following issues need to be addressed in further

study:

• the complexity of writing event handlers and the events

themselves;

• difficulty in debugging errors related to the sequence of

events and handler calls.

To address these issues, the study will continue as

follows:

• development of a visual program development

environment (as in [42]);

• search for errors in the event-driven program: lack of a

handler for an event; lack of conversion of the results of

one event to another;

• issuing recommendations on the program;

• identification of types of tasks that cannot be

implemented by EDP, and their characteristic features.

We used EDP and EDA in the author’s website [49].

University students [50] and high school students [51]

learn the EDP while developing a graphical user interface.

As you can see from the references, the actual interest in

EDP is supported only by microservices [10, 19, 20] and the

Kafka system [2, 8].

REFERENCES

[1] Markov A.A., Nagorny N.M. The Theory of Algorithms. Kluwer

Academic Publishers, 1988.

[2] Stopford B. Designing Event-Driven Systems. Concepts and Patterns
for Streaming Services with Apache Kafka. O’Reilly, 2018.

[3] Etzion O., Niblett P. Event Processing in Action. Manning, 2011.

[4] Clements P. et al. Documenting Software Architectures, 2nd ed.
Addison-Wesley, 2010.

[5] Mens T., Demeyer S. (eds) Software Evolution. Springer, 2008.

[6] Fairbanks G. Just Enough Software Architecture. A Risk-Driven
Approach. Marshall & Brainerd, 2010.

[7] Ford N. et al. Building Evolutionary Architectures. O’Reilly, 2017.

[8] Koutanov E. Effective Kafka. A Hands-On Guide to Building Robust
and Scalable Event-Driven Applications with Code Examples in Java.

Leanpub, 2021.

[9] Meyer B. Object-Oriented Software Construction, 2nd ed. Prentice
Hall, 1997.

[10] Percival H., Gregory B. Architecture Patterns with Python Enabling.

Test-Driven Development, Domain-Driven Design, and Event-Driven
Microservices. O’Reilly, 2020.

[11] Hansen S., Fossum T.V. Event Based Programming. In Kenosha WI,

2010.
[12] Richards M., Ford N. Fundamentals of Software Architecture. An

Engineering Approach. O’Reilly, 2020.

[13] Bansal A. Introduction to Programming Languages. CRC Press, 2014.
[14] Mühl G. et al. Distributed Event-Based Systems. Springer, 2006.

[15] Carzaniga A. et al. Issues in Supporting Event-Based Architectural

Styles. In 3rd International Workshop on Software Architecture,
1998:17–20.

[16] Faison T. Event-Based Programming. Taking Events to the Limit.

Apress, 2006.
[17] Liang Y. Introduction to Java Programming and Data Structures.

Comprehensive Version, 12th ed. Pearson, 2019.

[18] Tucker A., Noonan R. Programming Languages: Principles and
Paradigms, 2nd ed. McGraw-Hill, 2007.

[19] Bellemare A. Building Event-Driven Microservices. O’Reilly, 2020.

[20] Carnell J., Sánchez I.H. Spring Microservices in Action, 2nd ed.
Manning, 2021.

[21] Robillard M. Introduction to Software Design with Java. Springer,

2019.

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 4, 2025

83

[22] Friesen J. Java XML and JSON. Document Processing for Java SE,

2nd ed. Apress, 2019.
[23] Williams M. et al. Expert Twisted. Event-Driven and Asynchronous

Programming with Python. Apress, 2019.

[24] Krasner G., Pope S. A Cookbook for Using the Model-View-
Controller User Interface Paradigm in Smalltalk-80. In Journal of

Object-Oriented Programming, 1988.

[25] Ferg S. Event-Driven Programming: Introduction, Tutorial, History.
2006.

[26] Yourdon E., Constantine L. Structured Design. Fundamentals of a

Discipline of Computer Program and Systems Design, 2nd ed.
Yourdon Press, 1978.

[27] Stein L.A. Challenging the Computational Metaphor: Implications for

How We Think. In Cybernetics and Systems, 1999, 30(6).
[28] Paykin J. et al. The Essence of Event-Driven Programming. In

Leibniz International Proceedings in Informatics, 2016.

[29] Lalejini A. et al. Evolving Event-Driven Programs with SignalGP. In
Genetic and Evolutionary Computation Conference, 2018:1135–1142.

DOI: 10.1145/3205455.3205523.

[30] Philip G. Software Design Guidelines for Event-Driven
Programming. In Journal of Systems and Software, 1998, 41:79–91.

[31] Petitpierre C. An Event-Driven Programming Paradigm Compatible

with OO-Programming. In OOPSLA, 1998.

[32] Fischer J. et al. Tasks: Language Support for Event-Driven

Programming. In ACM SIGPLAN Symposium on Partial Evaluation

and Semantics-Based Program Manipulation, 2007:134–143.
DOI: 10.1145/1244381.1244403.

[33] Petrosino G. et al. Imperative and Event-Driven Programming of

Interoperable Software Agents. In International Workshop on
Engineering Multi-Agent Systems, 2023:23–40.

[34] Krohn M.N. et al. Events Can Make Sense. In USENIX Annual

Technical Conference, 2007:87–100.
[35] Fonseca A. et al. Eve: A Parallel Event-Driven Programming

Language. In Euro-Par 2014 Workshops, Part II, 2014:170–181.

[36] Van Cutsem T. et al. AmbientTalk: Object-Oriented Event-Driven
Programming in Mobile Ad hoc Networks. In 26th International

Conference of the Chilean Computer Science Society, 2007.
[37] Srbljić S. et al. Programming Language Design for Event-Driven

Service Composition. In Automatika, 2010, 51(4):374–386.

[38] Milicevic A. et al. Model-Based, Event-Driven Programming

Paradigm for Interactive Web Applications. In ACM International
Symposium on New Ideas, New Paradigms, and Reflections on

Programming & Software (Onward!'13), 2013:17–36.

DOI: 10.1145/2509578.2509588.
[39] Dunkels A. et al. Protothreads: Simplifying Event-Driven

Programming of Memory-Constrained Embedded Systems. In

SenSys, 2006.
[40] Fan X. et al. Towards an Event-Driven Programming Model for

OpenMP. In 45th International Conference on Parallel Processing

Workshops, 2016:240–249. DOI: 10.1109/ICPPW.2016.44.
[41] Desai A. et al. P: Safe Asynchronous Event-Driven Programming. In

34th ACM SIGPLAN Conference on Programming Language Design

and Implementation, 2013.
[42] Harel D., Kugler H. The Rhapsody Semantics of Statecharts (or, on

the Executable Core of the UML) – Preliminary Version. In SoftSpez

Final Report, Lecture Notes in Computer Science, 2004,
3147:3250354.

[43] McClurg J. et al. Event-Driven Network Programming. In PLDI,

2016:369–385. DOI: 10.1145/2908080.2908097.
[44] Ibanez S. et al. Event-Driven Packet Processing. In 18th ACM

Workshop on Hot Topics in Networks, 2019:133–140.

DOI: 10.1145/3365609.3365848.

[45] Hosobe H. Testing Event-Driven Programs in Processing. In ESSE,

2020. DOI: 10.1145/3393822.3432338.

[46] von Behren J.R. et al. Why Events are a Bad Idea (for
Highconcurrency Servers). In HotOS, 2003:19–24.

[47] Jaworski M., Ziade T. Expert Python Programming, 4th ed. Packt,

2021.
[48] Noback M. Object Design Style Guide. Manning, 2019.

[49] Prutzkow A.V. Internet-Resurs dlja Razmeschenija Rezultatov

Nauchnoj i Obrazovatelnoj Dejatelnosti [Internet-Resource for
Scientific and Educational Work Result Publishing]. In Vestnik of the

RSREU, 2018, 63:84–89. [in Rus]. DOI: 10.21667/1995-4565-2018-

63-1-84-89.
[50] Bruce K. et al. Event-Driven Programming Facilitates Learning

Standard Programming Concepts. In OOPSLA, 2004.
[51] Lang R., Saacks-Giguette M. Introducing High School Students to

Event-Driven Programming. In 29th ASEE/IEEE Frontiers in

Education Conference, 1999.

