
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 8, no.7, 2020

Abstract—The MDIO interface is used in conjunction with

the Ethernet MAC-PHY interfaces MII, RMII, SMII, GMII,
RGMII, SGMII and provides an access to the internal registers
of the Ethernet transceiver (which is also known as the
Ethernet PHY). The only Linux operating system provides a
unified API to access these registers. The only three programs
provide user access to these registers, and all of these programs
provide command-line user interface only. At the same time,
there are calls from Ethernet hardware designers for access
software tool of a some kind which could be able to provide
interactive access to PHY registers in the form of windows,
tables and input fields. The article describes the first program
which meets these calls.

Keywords—Ethernet, MII, RMII, SMII, GMII, RGMII,
SGMII, MDIO, PHY, MAC, autonegotiation, Linux, ioctl,
phytool, mii-reg, mfectl, Qt library, SSH, 82574L, KSZ9021RL

I. INTRODUCTION

The MDIO interface ([1], [2]) is used in conjunction with

the Ethernet MAC-PHY interfaces MII, RMII, SMII, GMII,
RGMII, SGMII and provides an access to the internal
registers of the Ethernet transceiver (which is also known as
the Ethernet PHY).

The MDIO interface is used mostly by Ethernet MAC-
controllers and transceivers and its software, to configure
Ethernet network interface to desired mode or, more
commonly, to track the process of autonegotiation of the
mode and the resulting mode of the network interface.

However, the needs for usage of the MDIO grow
dramatically inside of the processes of designing, debugging
and testing Ethernet hardware, including compliance testing.

The transceiver must be configured to special test modes
for electrical measurements.

Loopbacks of various directions (local/remote) should be
configured at various sublayers and/or subdevices.

Various configurations for fixed or autonegotiated modes
are used in various test scenarios.

In many test scenarios the link-partner device must be
configured as well as the device under test.

All these configuration procedures use the MDIO
interface.

Manuscript received June 5, 2020.
Dmitry E. Gouriev is scientists in Faculty of Computational

Mathematics and Cybernetics of Lomonosov Moscow State University,
Moscow, Russia (email gouriev@oit.cmc.msu.ru).

Ding Yourun is student in Faculty of Computational Mathematics and
Cybernetics of Lomonosov Moscow State University (email
during1031@gmail.com).

The only Linux operating system provides a unified API
to access Ethernet PHY registers, using special ioctl() calls
SIOCGMIIPHY and SIOCSMIIPHY.

There are the only three programs which provide user
access to these registers: phytool [3], mii-reg [4] and mfectl
[5], and all of these programs provide command-line user
interface only.

At the same time, there are calls from Ethernet hardware
designers for access software tool of a some kind which
could be able to provide interactive access to the PHY
registers in the form of windows, tables and input fields.

The article is dedicated to the first step in this direction
and describes the first program which meets these calls of
hardware designers.

Design and implementation of the program were a part of
a master thesis of Ding Yourun, done under direction of
Dmitry E. Gouriev.

II. SOME DETAILS OF MDIO INTERFACE

The MDIO (Management Data Input/Output) interface
connects Ethernet MAC-controller and Ethernet PHY
(transceiver) for management purpose only. Data to send to
the network or received from the network are exchanged via
data interfaces like MII, RMII, SMII, GMII, RGMII or
SGMII.

The MDIO interface consists of two signals: clock signal
MDC and bidirectional data signal MDIO. The interface can
operate under aperiodic clock in frequency range from 400
KHz to 2,5 MHz. The interface provides an exchange of
interface frames of the following structure (see Figure 1):

1) 32-bit preamble filled with “1” bit value, optional,
2) 2-bit “start of frame” filled with value “01”,
3) 2-bit code of operation: “10” for reading and “01” for

writing,
4) 5-bit PHY address (up to 32 PHYs on the single MDIO

bus are allowed),
5) 5-bit PHY register address (up to 32 registers in the

single PHY are allowed for direct access),
6) 2-bit pause for data source switching: the “10” bit

sequence is transmitted by the MAC-controller in the write
operation, whereas in the read operation the MAC-controller
switches its MDIO signal to high impedance state and PHY
transmits the “0” value bit in the second bit, resulting in
“Z0” transmission,

7) 16-bit register value, in the write operation it is
transmitted by the MAC-controller, whereas in the read
operation it is transmitted by the PHY.

Interactive Graphical Program to access
Ethernet PHY registers

Ding Yourun, Dmitry E. Gouriev

91

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 8, no.7, 2020

The interface provides direct access to 32 PHY registers.
Registers 0-15 are defined in the standard [1], and registers
16-31 are defined by the manufacturer of the PHY.

Such a small number of the registers is usually
unsufficient to control all aspects of the work of
contemporary Ethernet PHYs. For this purpose the Ethernet
standard provides an ability to access registers in additional
register pages, or – in terms of the MDIO itself – MMDs
(MDIO Manageable Devices). The standard [1] provides

this ability using registers 13 and 14 for indirect access, and
the standard [2] provides the same using an advanced MDIO
frame structure (see Figure 2). However, some producers
break the standard in this part and implement their own
indirect access schemes (see Intel 82574L and Micrel
KSZ9021RL as examples).

Figure 1. MDIO frame format, in accordance with IEEE 802.3 Clause 22. a) – write a register, b) – read a register.

Figure 2. MDIO frame format, in accordance with IEEE 802.3 Clause 45. a) – set register address, b) – write a register, c) –

read a register, d) – read a register and post-increment the address.

92

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 8, no.7, 2020

Figure 3. The program GUI.

Figure 4. The program GUI in the remote mode.

III. THE PROGRAM GUI

The program GUI is presented in Figure 3.
The upper part of the program window contains a panel

for parameters and actions (buttons) to connect to the PHY.
In the simplest case in Figure 3 there is the only one

parameter – a name of a network interface (i.e. eth0, eth1,
etc.).

In connected state, the program displays the product name

93

of the PHY, in accordance with its manufacturer description,
if the program is able to detect it.

The lower part of the program window contains a table of
PHY registers.

Each register is displayed with its name, register number
and current value. The values are updated several times per
second.

The names of the registers are displayed in accordance
with the manufacturer’s documentation, if the program is
able to detect the type of the PHY, otherwise register names
in accordance with [1] are displayed.

User can change (edit) the value of any register in the
table, and when finished (pressing the Enter key), the new
value is transferred into the register. The editing state of the
register is indicated by rendering its value in red color.

There is a page selector between connection panel and
register table, which provides switching between main
register page and additional indirect register pages (MMDs).
On changing the value of the selector the table is reloaded
with the names of the registers of the selected register page
and starts display register values from the selected page.
 The more complex case, called “remote mode”, is shown
in Figure 4. In this case the program provides access to PHY
registers on another computer. The SSH protocol and the ssh
external program are used to connect to that remote
computer. The mfectl program [5] on that remote computer
is used as an agent, which provides access to PHY registers.
 There are additional parameters to be entered to make the
connection: remote computer hostname or IP-address (Host)
and username on the remote computer (User).

Due to still-experimental state of the program, there are
also additional actions to establish a remote connection step-
by-step. At 1st step we are to check the presence of the ssh
external program, at 2nd step we are to check an ability to
make an SSH connection to a remote computer, and at the
3rd step we are to check the presence of the mfectl program
on the remote computer.
 After all, the user enters a network interface name in the
remote computer and commits the connection. Further work
with PHY registers does not differ from the simple case in
Figure 3.

IV. THE PROGRAM FEATURES

Here we summarize the main features of the program:
The program displays and provides an ability to change

the values of the PHY registers.
The program displays register names in accordance with

manufacturer description for known types of PHY.
The program provides an access to the registers in

additional register pages (MMDs) as well.
The program provides an access to the registers of the

PHYs in remote hosts as well.

V. IMPLEMENTATION DETAILS

The program uses ioctl calls [6] SIOCGMIIREG and

SIOCSMIIREG to access PHY registers on local computer.
The program, uses the ssh external program to make a

network connection to a remote computer and the mfectl
program on the remote computer to access PHY registers in
the remote computer.

The program implements the indirect access algorithms in
accordance with [1] to access registers in additional register
pages.

The program uses the descriptions of the registers of PHY
of particular types in the form of “ini”-files, as shown in the
following example:

[Intel 82574L]
0="Control"
1="Status"
2="PhyIdentifier"
3="PhyIdentifier*"
……

The program detects the type of the PHY by analyzing

values in the registers 2 and 3 (PHY Identifier).
The GUI of the program was designed and developed on

the top of the Qt Library, version 5 [7].

VI. CONCLUSION

Interactive graphical access to Ethernet PHY registers is
the actual requirement of processes of Ethernet hardware
design, testing and debugging.

The presented program meets this requirement.
The program GUI, features and implementation details

were described in the article.

REFERENCES
[1] IEEE Std 802.3 - 2012. IEEE Standard for Ethernet. Clause 22.
[2] IEEE Std 802.3 - 2012. IEEE Standard for Ethernet. Clause 45.
[3] Tobias Waldekranz. Phytool. https://github.com/wkz/phytool.

Retrieved: 15/01/2019.
[4] Tim Harvey. conformance testing: mii-reg.c.

http://trac.gateworks.com/attachment/wiki/conformance_testing/mii-
reg.c. Retrieved: 15/01/2019

[5] Dmitry E. Gouriev. Tools to control an Ethernet transceiver under
testing and debugging. International Journal of Open Information
Technologies, Vol. 6, No 4, 2018. (In Russian).
http://injoit.org/index.php/j1/article/view/556. Retrieved: 30/06/2019.

[6] ioctl (2). Linux manual pages.
[7] QT library. https://www.qt.io/product/framework. Retrieved:

30/01/2019

94

	I. INTRODUCTION
	II. Some details of MDIO interface
	III. The program GUI
	IV. The program features
	V. Implementation details
	VI. Conclusion
	References

