
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 8, no.6, 2020

41

Abstract — Data transmission using orthogonal functions

means combining base carrier signals (scaled by numbers of

useful information) into one sent signal. Processing the mixed

signal after receiving allows dividing it back into carriers and

restoring useful numbers.

What is the most compact set of complex sine waves for this?

How will the random components of the spectrum between the

system signals (or the imperfection of the parameters) affect

the result? What is the algorithm for processing the received

signal and what is the minimum time needed to obtain the

initial information? These issues are discussed “from the

bottom to up”, from simple physical considerations to

mathematical expressions and processing algorithms in the

MatLab package.

Keywords — scalar product, sine waves, complex sine waves,

complex signals, Fourier series, Discrete Fourier Transform,

MatLab.

I. INTRODUCTION

The article continues the introduction to a signal

processing tasks for radio astronomy measurements and

satellite data collection at the “Ventspils International Radio

Astronomy Center” of the Ventspils University of Applied

Sciences.

In previous papers, complex signal representation [1],

spectral analysis principles [2] and sampling [3] were

discussed. The current article is dedicated to a method

sending information (flow of numbers) using sets of

orthogonal sine waves.

The rest of the paper is the following. Section 2 illustrates

the physical principle of composing and decomposing a

signal into base components, Section 3 presents the

operation of the scalar product of functions. In Section 4 and

Section 5, the method is applied to real and complex sine

wave systems respectively. The Appendix contains the

MatLab codes (used as the examples and produced

illustration figures to all parts) for version MatLab 6.5

(R2015a).

II. SIGNAL MIX

The process of decomposition the signal into spectral

components, considered in the paper [2] is reversible: the

total signal can be obtained by summing various sine waves

back. The use of the orthogonal base signal systems is

similar, but there is a finite set of suitable reference

Manuscript received May 31, 2019.

Eugene Tikhonov is with Ventspils University of Applied Sciences,

101a Inženieru Street, LV-3601, Ventspils, Latvia (e-mail:

abava@abava.net).

Manfred Sneps-Sneppe is with Ventspils University of Applied

Sciences, 101a Inženieru Street, LV-3601, Ventspils, Latvia (e-mail:

amanfredss@venta.lv).

components instead of a continuous spectrum. To

decompose them and extract the encoded information in the

receiver, a special tool should be used - the scalar product of

functions.

This is illustrated in Fig. 1, which demonstrates the

reconstruction of a signal from individual components

(modified picture from [2] and [4]).

Fig. 1. A single light signal forming by a prism from the

components

III. SCALAR PRODUCT OF SIGNALS

In two-dimensional geometry there is a useful tool - the

scalar product of vectors. It may be written in the form of

the product of vector lengths by the cosine of the angle

between them: 〈 ⃗ ⃗〉 | || | , or in the form of

Cartesian coordinates [5]: 〈 ⃗ ⃗〉 . Scalar

product characterizes the similarity or mutual

(in)dependence of these vectors: it is 0 when they are

perpendicular. Another important property of the scalar

product is that it reflects length (norm) of the vector:

〈 ⃗ ⃗〉 | | .

The definition may be expanded with the preservation of

its useful properties. For high-dimension geometry (with an

arbitrary number of coordinates) an extended definition of

the coordinate form is: 〈 ⃗ ⃗〉 ∑

 . In the area of

complex numbers its definition is refined: 〈 ⃗ ⃗〉
∑

 (the second vector coordinates are replaced with

the conjugate [1]). This is done in order to preserve the

property of square norm (| |). Since the complex

conjugation of a real number is the same real number, this

form is correct for all vectors, both real and complex.

This definition is generalized for the case of continuous

complex functions on a given parameter interval . It is

done as if the coordinates of the vector correspond to

infinite number of infinitely small intervals, into which this

interval is divided. Replacing the sum by the integral

gives [5]:

〈 〉 〈 () ()〉 ∫ () ()

 (1)

Introduction to signal processing: information

transmission using orthogonal sine waves

E. Tikhonov, M. Sneps-Sneppe

mailto:abava@abava.net
mailto:amanfredss@venta.lv

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 8, no.6, 2020

42

Where () and ()are multiplied functions, the time

corresponds to the beginning, and the time corresponds to

the duration of the product calculation.

Objects with zero scalar product are called orthogonal

(for vectors this corresponds to perpendicularity). They are

independent of each other in some senses (different for

different types of multiplied objects).

Scalar product has the property of linearity (for all

cases): 〈 〉 〈 〉 〈 〉, where

and are numbers and , , – multiplied objects

(numbers, vectors, functions and etc.). Therefore, it is easy

to restore all the coefficients (representing useful

information) of a signal that is a linear combination of

orthogonal (base) functions (with a help of the scalar

product of this signal with these base functions).

For example, if there are two orthogonal functions and

 (such that 〈 〉), constant numbers , and signal

 () () ():
〈 〉 〈 () () ()〉

 〈 〉 〈 〉 ⏟

 〈 〉

〈 〉
〈 〉

(2)

IV. REAL SINE WAVES

A. Orthogonality of two sine waves

Real sine waves can be written in mathematical form [1]:

{
 () ()

 () ()
 (3)

So their scalar product will be determined by the formula

(using designations

):

〈 〉 ∫ () ()

∫ [()

 ()]

(4)

These signals will be orthogonal on those calculation time

intervals , where their scalar product becomes zero.

Consider all such possibilities for different initial cases.

1) Trivial case ():

〈 〉

∫ [() ()]

[() ()]

(5)

In this case, the base signals are constant, therefore either

everywhere is orthogonal, or not everywhere. The case is

obviously useless for transmitting information.

2) Case of equal/opposite frequencies

This is the case of equal frequencies (
) and reverse case of opposite

frequencies (), leading to exactly the same

results:

〈 〉

∫ [() ()]

⏟

 ([])

⏟

(6)

The result is the sum of the linearly increasing (with

calculation time) summand

 and the product of two

sinusoids (scaled by

). Since each sinusoid value is

limited to [], the second summand is in range

[

] always. After a while the first summand will

exceed it, so there will be no stable zeros. That is, functions

may be orthogonal (i.e. zeros exist and depend on the initial

parameters, in particular, the initial phases at the moment of

the beginning of the summation) only for time lesser than

 ()
. For sufficiently long transmissions such functions

are not suitable.

The important case of zero linear growth (, i.e.

) is an exception. In this

case, the phases of the original signals must differ by

. That

is, the signals are a sine and a cosine waves on the same

frequency:

{
 () ()

 () ()
 (7)

The scalar product zeroes (orthogonality intervals) in this

case always exist at points that doesn’t depend on the initial

phases and the beginning of the summation moment:

 . They correspond to calculation time intervals:

 (8)

Thus, at the same time we can transmit 2 numbers on the

same frequency. In particular, these numbers can be

interpreted as components of a two-dimensional vector. Or

as parts of a complex number (real and imaginary

components, or angle and length). In this sense, we can say

that at each frequency one complex number can be

transmitted.

3) Common case of different frequencies (
)

〈 〉

∫ [() ()]

[

 (
 ()

)

 (
 ()

)]

[() ()]

(9)

Here the function {

 and variables

 are

used.

Fig. 2 shows example of calculation time dependence for

the scalar products for signals () () and ()

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 8, no.6, 2020

43

 (

) by definition (4), realized by MatLab program,

see Appendix A and B.

Fig. 2. Signals and scalar product results in time for two sine

waves

Points of orthogonality (〈 〉) where function do

not affect each other correspond to:

 () () (10)

The parameters and depend on the usually unknown

random phases at the time of the beginning of the recovery

(summation) and should not be relied upon. Although they

may in some cases give additional time points at which the

base functions will be mutually orthogonal (for example,

where one or both of the cosines turn to 0), they will

disappear even with small changes in the initial phase.

Fig. 3 shows surface for (10) with zeros marked as peaks

(see Appendix C) with random initial phases.

Fig. 3. Plane of 〈 〉 possible values with peaks on zeros.

Therefore, the stable solution is at points (taking into

account the case in question:):

{

 {

 {

(11)

So all possible pairs of the orthogonal frequencies on the

calculating time are:

{

()

()

{

 () (

())

 () (

())

 (12)

Note, that at each of these frequencies, two basis signals

(sine and cosine) can be used simultaneously in accordance

with case 2.

B. Orthogonal real sine waves system

By the system of orthogonal waves we mean the set of

base sine waves that do not affect each other at certain

moments of the calculation (the same for all of them).

As was shown in (12) following frequencies (and only

them) will be orthogonal to each other on the time

interval :

{

()

()

 {

}

{

 ⁄

 (⁄)

 { }

(13)

It can be seen that the solution of this system for each is

divided into two independent sets of allowable frequencies

{ } and { } (each element in the set may

correspond to its own or ; with a step

between the nearby elements of the set). The first of them

(odd) corresponds to , the second (even) to .

In each set, any pair of frequencies orthogonal if their

indexes do not coincide and are not opposite. Therefore,

the selection of any element from the set for a system of

basic functions (for example, with the index)

excludes for further use as the basic signal this element and

its opposite (in current example, indexes and
). The remaining elements (for example, with indexes

) remain available for further selection (for

example, the next frequency in the system may correspond

to). Therefore, for any index value | |, we can

choose only one arbitrary sign of the frequency (positive or

negative).

Therefore, we obtain two series of orthogonal real sine

wave systems: “even” and “odd”:

{ } {

 }

{ } {

(

) }

(14)

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 8, no.6, 2020

44

Fig. 4. Two systems (series) of real orthogonal sine waves

corresponding to restore time

The “even” series with all positive frequencies is a

classical Fourier series, which is usually proposed as a

solution for orthogonal systems. The second is an

additional one (with a frequency shift

 from the Fourier

series). Also, instead of any frequency equal opposite one

could be used. Any other frequency will not be orthogonal

on the chosen interval , and it will distort the restored

values according to (9) if it is present in the total signal.

Since all sine waves from same set cease to influence

each other at the same moment of calculations , the set can

be divided into an arbitrary number of subsets (independent

“channels”) in an arbitrary way. For example, we can

alternate the frequency of channels in turn, group by several

sequence numbers, and so on.

Fig. 5. Orthogonal frequency system channeling example

(colors correspond to different channels).

C. Composition and decomposition algorithms

To restore the original information values, it is necessary

not only to ensure that in each receiving channel the

contributions of all the others are extinguished, but also to

consider how this channel is scaled when processing. Scalar

product of a function on itself (, ,

):

〈 〉

∫ [()]

 (

)

(15)

At the moments of completing the summation (

), it equals to:

〈 〉

 (16)

Thus, to restore the information (linear factors of the basis

functions) from the mixed signal () () (), we

must to multiply corresponding scalar product by

In summary: for real sine wave systems, choosing the

reference frequency step (or the desired calculation time

 for each information numbers packet, that is related by the

ratio

) we should form the mixed signal, scaling

“odd” or “even” sine series (initial phases on the transmitter

and receiver and do not matter) with useful

information numbers and :

 () ∑ [(

) (

)]

 () ∑ [(

(

)

) (

(

)

)]

(17)

For the next interval we could use the following scaling

numbers. That forms transmitted information flow with data

rate limited to time for one dose.

To restore the information numbers from mixed signal,

the receiver must calculate scalar product with each base

functions from the series:

∫ () (

)

∫ () (

(

)

)

∫ () (

)

∫ () (

(

)

)

(18)

This can be done both with an analog circuit or using

digital signal processing (taking into account the necessary

sampling intervals and frequency limits with bandwidth

filters).

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 8, no.6, 2020

45

Fig. 6. Signal composition (a, c) and decomposition (b, d) using

odd (a, b) and even (c, d) series of orthogonal sine waves, see

Matlab code in Appendix A, D.

D. Deviations and errors

The scalar product of base reference signals is strictly

zero at a control points only if all relations are strictly

precise. If the equality is only approximate, then the

numbers recovered at the receiver will differ from the

original numbers.

1) Deviation of the initial phases

As was shown in equation (11), for sine waves with

different frequencies (base signals) the initial phase does not

affect the recovery.

Another situation for the deviations of sine and cosine

waves on the same frequency. In this case, the linear error

 will accumulate at each step (which will cause

the numbers to be restored incorrectly), and after a time

 ()
 they will completely diverge. Therefore, it is

necessary to synchronize the phase difference of the

reference signals at the sender, for example, to get them

from a single source of harmonic oscillations and form a

phase rotation. Zeroing the current processed value for this

at each step could partially compensate that.

Example of cumulative error is shown in Figure 7 for

signals () and (

), constructed

with Matlab code in Appendix A and E. The same situation

but on a large scale is with an arbitrary phase difference .

Fig. 7. Restoring error (and shift of zeros) accumulation with

almost orthogonal one-frequency sine waves phase deviation

.

Linear error is green and periodical is magenta.

2) Frequencies deviation

Using the scalar product formula (9), we can estimate the

maximum possible error as |

| |

|

depending on the presence of non-orthogonal sine wave in a

signal for the most unfortunate case of random phases.

For example, with the amplitudes of interference equal to

1 each we obtain the dependence according to Fig. 8 for

sine waves with base (smallest) frequency (see

Appendix F):

Fig. 8. Restoring maximum error estimation for sine wave

shifted from processed. Zeros corresponding to orthogonal

frequencies.

3) Deviation of computation time: several

computation cycles and guard intervals

If the actual calculation time does not correspond to the

planned time , then in both cases of equal and different

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 8, no.6, 2020

46

frequencies an error corresponding to equations (6) or (9)

will be made when calculating the scalar product. The bias

can also occur due to imperfect timers or a shift in the start

of the calculation.

To reduce the error (and in the best case, a complete

exception), you can use the following tricks:

1. Transmit the summary signal for a time slightly

exceeding the required .

2. Between the changes of the sine waves coefficients

(information numbers), insert zero-valued

“protective” windows with nothing transmitted (a

zero signal will not make any contribution to the

calculated).

The value of these corrections could be fixed as the

estimated maximum deviations of the calculation time from

the generation time or more.

V. COMPLEX SINE WAVES

As shown in Section 4, two arbitrary numbers can be

transmitted at each frequency. In particular, we can use this

frequency to transmit both components of one complex

number, that is one complex number. In other words, at each

frequency a real transmission of one complex sine wave is

possible.

A. Two orthogonal complex waves

Equation for two complex sine waves and , as it was

shown in [1]:

{
 () ()

 () ()
 (19)

On interval (starting from time) scalar product for

them will be (,) as follows:

〈 〉 ∫ ()⏟
 ()

 ()⏟
 ()

∫

 () ()

(20)

Fig. 9 shows dependence of the current value of the

scalar product definition (1) example for the functions

 (
 ⁄), (

 ⁄) calculated from the initial

time with duration , realized by MatLab program, see

Appendix A and G.

Fig. 9. Scalar product of function for complex sine waves

Here the function () is introduced - the extension

of the function () to the space of complex numbers:

 () {

 {

⏞

⏞

(21)

Since () , this function gives the exact

value for the integral, including the case of equal

frequencies (). Particularly, 〈 〉
〈 〉 . Zero points of scalar product for any different

sine waves with (that does not depend on initial

phases) determine the exact relationship of the difference in

their frequencies and the summation time interval:

 (22)

B. Deviation of frequencies or phases

What happens if instead of the orthogonal signal ()
another complex sine wave ̃() will be received? Since the

phase () is generally be unknown, the scalar

product of and ̃ (with the amplitude) could be

arbitrary, but the deviations of its real and imaginary

components will not exceed the error proportional to its

module:
| (〈 〉)| | (〈 〉)| | ()|

 ()

()

(23)

shows dependence of the scalar product result (from the

initial time with duration) according to

equation (20) for complex sine wave signals ()

 and () (with different frequencies) on

the relative frequency difference

 ⁄
 in the Real /

Imaginary representation (Fig. 10, а) and Abs / Angle

representation (Fig. 10, и). The circles indicate those

frequency differences (according (22) correspond to points

) where the scalar product is 0, i.e. the

functions are orthogonal in the indicated calculation

interval. The graph is built in the MatLab program, see

Appendix H.

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 8, no.6, 2020

47

Fig. 10. Scalar product of function for different frequency

differences.

It can be seen that certain frequencies (with a step

 between them) do not affect , since their complex

sine wave is orthogonal to it. Others will lead to

corresponding error. The same will be true for each of the

orthogonal frequencies forming the orthogonal system as

follows (but, of course, for them there will be their own

distance from the interference frequency).
This allows us to evaluate both the calculation error

associated with the deviation of the frequency at the receiver

(from the transmitter frequency) and the influence of

extraneous inclusions in the information signal within the

bandwidth range.

C. Multiple orthogonal complex sine waves system

If we want to use more than two sine waves for

transferring values, then we need all of them to be mutually

orthogonal at the same known time of the calculation (any

other non-orthogonal components will distort the calculated

numbers as shown in the previous subsection) [6].

If the minimum frequency in system is , and the

calculation time is (so minimal frequency difference is

), then all frequencies that are multiple of the step

 it will be orthogonal to it at time - and only these. But

they also will be orthogonal to each other at this moment –

since they are also separated by a multiple of the same steps

 . Thus, these two parameters determine any complex sine

waves orthogonal system (phases can be arbitrary):

 ()

 ((

))

(24)

Fig. 11 illustrates a system of mutually orthogonal

frequencies for integer non-negative parameters

according to equation (24).

Fig. 11. Orthogonal complex sine waves system visualization.

Thus, the principle of generating a signal () and

restoring information (a set of complex amplitude { } from

that) for base complex sine

waves () () [], orthogonal on

the interval (i.e.

) is as

follows:

 () ∑ ()

 ∑ ()

 ∑ (

)

〈 () ()〉

∫ ()

 ((

))

(25)

D. Decomposition algorithm

Various algorithms for restoring the original numbers

using the above formulas could be offered: an analog circuit

that directly implements actions, numerical calculation of

the integral, or the corresponding matrix form. But the most

effective is the algorithm that uses Discrete Fourier

Transform (DFT) [3], [7].

The original formula for a signal assembled from basic

complex sinusoids is similar to DFT. After some formal

transformations for sampling points with a step (so that

the entire time period for calculating the scalar product is

 , where where N is the number of samples of the

signal):

 () ⏟
 ()

 ∑ (⏟

)

 ()

 ∑

(26)

That is exactly inversed DFT multiplied by . Therefore,

to obtain the can use the direct discrete Fourier

transform (with its fast FFT algorithms [8]) for the samples

 , divided by :

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 8, no.6, 2020

48

∑

 (27)

Important question: what number of samples should

we use? According to the Kotelnikov theorem [3] it should

be defined by the doubled maximum signal frequency

 . But this condition arose so that cyclic copies of the

continuous spectrum (arising from signal sampling) located

in the interval [] do not overlap each other. In

our case there are no negative frequencies in spectrum (all

difference frequencies are multiplied by positive

integer). Therefore, the minimum time sampling step is two

times less and is equal to the inverse maximum frequency:

 (28)

Fig. 12. Common sampled signal spectrum (a) and case of

orthogonal sine waves system (b)

Fig. 12 illustrates the difference between the sampled

spectrum of some arbitrary signal (a) containing negative

frequencies and a set of complex sine waves with only

positive frequency differences (b). In both cases, the

spectrum duplicated with copies, but the minimum

frequency distance of copying without overlapping for case

(b) can be 2 times smaller.

The required number of signal samples in this case is

 . Only samples are sufficient, even for very high

frequencies of the mixed signal. The Fast Fourier Transform

(FFT) algorithm requires ~ operations. Hence the

initial coefficients (information numbers):

∑(

)

 (29)

Fig. 13 (a) shows the signal (), which is the sum of 4

complex sine waves (base frequency ; the step

between the frequencies
 ⁄ , the initial phases are

random), scaled by random complex numbers (which are

useful information transmitted) and signal samples

needed to restore these numbers. Fig. 13 (b) shows the

result of applying the discrete Fourier transform (exactly

coinciding with the original information numbers) to these

samples set { } and the envelope of the discrete spectrum.

Figures obtained in MatLab program – see Appendix I.

Fig. 13. Signal as the set of orthogonal complex sine waves (a)

and information (scale factors) restoring using FFT (b).

The processing algorithm is as follows: getting

samples from the original signal (), multiplying each

of them by . Carrying out FFT for the obtained set

of numbers, obtaining
 . To obtain the initial data –

scaling with

 and phase rotation according to initial

complex sine waves: . These phases can be

determined, for example, by transmitting known set of

numbers at all base frequencies, for example { }.

VI. CONCLUSION

The article briefly described the issues of information

transfer (complex numbers) using a system of orthogonal

functions. The design of such a system is discussed (and

possible errors with deviations) as well as the MatLab

algorithm is proposed to recover information from the

generated mixed signal with operation time slowly increases

from the number of transmitted numbers (even for high

frequencies). Thus, this method can be an effective way of

transmitting information.

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 8, no.6, 2020

49

APPENDIX

A. Matlab code 1. Numerical integral as function of

upper limit function

integralfuncrect.m
%% Numerical integral as a function
% dt - integration step, tn = t0+dn*n

% f - function vector = [f1(t0) f1(t1) ...;

f2(t0) f2(t1) ...; ...]

function i = integralfuncrect(dt, f)
 v = zeros(1, size(f, 1)); % current

integral value

 i = zeros(size(f, 2), size(f, 1)); % function

of integral, I(0) = 0;

 for n = 2:size(f, 2);
 v = v + conj(f(:,n))';
 i = [i; v];
 end
 i = i*dt;
end

B. Matlab code 2. Two sine waves scalar product

w1 = pi; % 1st frequency

p1 = 0; % 1st phase

s1 = @(t) cos(w1*t+p1); % 1st sine wave

w2 = 2/3*pi; % 2nd frequency

p2 = pi/2; % 2nd phase

s2 = @(t) cos(w2*t+p2); % 2nd sine wave

dt = 0.01; % time step

L = 2*pi/abs(w1-w2); % zero times

time = 0:dt:3.5*L; % timeline

izero = round((0:3)/dt*L)+1; % zero indexes

% scalar function in time

Integral = integralfuncrect(dt,

[s1(time).*s1(time); s1(time).*s2(time);

s2(time).*s2(time)]);

%% Plot

figure();

hold on; grid on;

title('<s1, s2>(t)');

xlabel('Time, t');

ylabel('Value f(t)');

plot(time, s1(time),'r:');

% plot s1

plot(time, s2(time),'b:');

% plot s2

plot(time, s1(time).*s2(time),'k--');

% plot s2

plot(time, integral(:, 1), 'r-');

% plot <s1, s1>

plot(time, integral(:, 3), 'b-');

% plot <s1, s2>

plot(time, integral(:, 2), 'k-');

% plot <s1, s2>

scatter(izero*dt, integral(izero, 1), 50,

'filled', 'r');

scatter(izero*dt, integral(izero, 3), 50, 'b');

scatter(izero*dt, integral(izero, 2), 50,

'filled', 'k');

legend('s1(t)', 's2(t)', 's1(t)*s2(t)', '<s1,

s1>', '<s2, s2>', '<s1, s2>');

C. Matlab code 3. Two sine waves scalar product plane

%% sinc(x)cos(x+u)+sinc(y)cos(y+u) plane

N = 3; % number of [-pi pi] intervals

shown

acc = 20; % accuracy of a plot

u = 2*pi*rand(1,1); % random u

v = 2*pi*rand(1,1); % random v

%% Processing

dx = pi/acc;

dy = pi/acc;

[x, y] = meshgrid(-pi*N:dx:pi*N, -pi*N:dy:pi*N);

% xy matrix

z = (sinc(x/pi).*cos(x+u) + sinc(y/pi).*cos(y+v));

% sinc = sin(pi*x)/(pi*x)

scale = max(max(abs(z)))*3; % peak height

calculating

z(abs(z)<0.00001) = scale; % peak instead

zero

%% Plotting

hold on; grid on; view(143, 48);

title('Peaks on zeros of

<f,g>=sinc(x)cos(x+u)+sinc(y)cos(y+v)');

xlabel('x'); ylabel('y'); zlabel('<f, g> peaked');

surf(x, y, z, 'EdgeColor', 'none');

D. Matlab code 4. Orthogonal sines based signal

composition and restoring

w0 = pi; % base frequency

t0 = 0; % start time

N = 1; % cycles

acc = 100;

X = [1 2 3]; % information 1

Y = [4 5 6]; % information 2

phs = 2*pi*rand(size(X, 2), 1)-pi; % random

phases for cos

%% Processing

L = pi/w0;

dt = L/acc;

t1 = t0+L*N;

time = t0:dt:t1; % timeline

tzero = t0:L:t1; % zero points

sn_even_cos = @(t, n) -cos(2*w0*n*t+phs(n));

% even (Fourier) cos

sn_even_sin = @(t, n) sin(2*w0*n*t+phs(n));

% even (Fourier) sin

sn_odd_cos = @(t, n) cos(2*w0*(n-1/2)*t+phs(n));

% odd series cos

sn_odd_sin = @(t, n) sin(2*w0*(n-1/2)*t+phs(n));

% odd series sin

%% Form even series (Fourier)

subplot(2, 2, 1);

hold on; grid on;

title('a) Even series signal');

xlabel('t'); ylabel('s_{even}(t)');

s_even = zeros(1, size(time, 2)); % init

signal 1

for i=1:size(X, 2)

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 8, no.6, 2020

50

 plot(time, X(i)*sn_even_cos(time, i), '--',

'DisplayName', strcat('cos_',num2str(i)));

 plot(time, Y(i)*sn_even_sin(time, i), '--',

'DisplayName', strcat('sin_',num2str(i)));

 s_even = s_even + X(i)*sn_even_cos(time, i) +

Y(i)*sn_even_sin(time, i);

end

plot(time, s_even, 'k-', 'DisplayName',

's_{even}(t)');

legend('Location', 'best');

%% Form odd series

subplot(2, 2, 3);

hold on; grid on;

title('c) Odd series signal');

xlabel('t'); ylabel('s_{odd}(t)');

s_odd = zeros(1, size(time, 2)); % init

signal 1

for i=1:size(X, 2)

 plot(time, X(i)*sn_odd_cos(time, i), '--',

'DisplayName', strcat('cos_',num2str(i)));

 plot(time, Y(i)*sn_odd_sin(time, i), '--',

'DisplayName', strcat('sin_',num2str(i)));

 s_odd = s_odd + X(i)*sn_odd_cos(time, i) +

Y(i)*sn_odd_sin(time, i);

end

plot(time, s_odd, 'k-', 'DisplayName',

's_{odd}(t)');

legend('Location', 'best');

%% Processing: new phases

phs = 2*pi*rand(size(X, 2), 1)-pi; % random

phases for cos

%% Restoring even series (Fourier)

subplot(2, 2, 2);

hold on; grid on;

title('b) Even series restoring');

xlabel('t'); ylabel('X_{even}(t)');

for i=1:size(X, 2)

 integral = 2/L*integralfuncrect(dt,

[s_even.*sn_even_cos(time, i);

s_even.*sn_even_sin(time, i)]);

% plot <s, cos>

 plot(time, integral(:, 1), 'DisplayName',

strcat('<s*cos_',num2str(i),'>'));

% plot <s, sin>

 plot(time, integral(:, 2), 'DisplayName',

strcat('<s*sin_',num2str(i),'>'));

 scatter(tzero, integral(1+tzero/dt, 1), 50,

'filled', 'r', 'DisplayName',

strcat('X_',num2str(i))); % <s1, s1> @ zeros

 scatter(tzero, integral(1+tzero/dt, 2), 50,

'filled', 'b', 'DisplayName',

strcat('Y_',num2str(i))); % <s1, s1> @ zeros

end

legend('Location', 'best');

%% Restoring odd series

subplot(2, 2, 4);

hold on; grid on;

title('d) Odd series restoring');

xlabel('t'); ylabel('X_{odd}(t)');

for i=1:size(X, 2)

 integral = 2/L*integralfuncrect(dt,

[s_odd.*sn_odd_cos(time, i);

s_odd.*sn_odd_sin(time, i)]);

% plot <s1, s1>

 plot(time, integral(:, 1), 'DisplayName',

strcat('<s*cos_',num2str(i),'>'));

% plot <s1, s1>

 plot(time, integral(:, 2), 'DisplayName',

strcat('<s*sin_',num2str(i),'>'));

 scatter(tzero, integral(1+tzero/dt, 1), 50,

'filled', 'r', 'DisplayName',

strcat('X_',num2str(i))); % <s1, s1> @ zeros

 scatter(tzero, integral(1+tzero/dt, 2), 50,

'filled', 'b', 'DisplayName',

strcat('Y_',num2str(i))); % <s1, s1> @ zeros

end

legend('Location', 'best');

E. Matlab code 5. Phase error summation

%% Parameters

L = 1; % time to sum

N = 4; % number of cycles

t0 = 2; % start time

dt = L/10; % time step

w = pi/L; % sin/cos frequency

ph1 = 0; % s1 (cos) phase

ph2 = pi/2-pi/50; % s2 (sin) phase

%% Processing

time = t0:dt:(t0+N*L); % timeline

tzero = t0:L:(t0+N*L); % zero points

ph_dif = ph1 - ph2; % phases dif

ph_sum = ph1 + ph2; % phases sum

s = @(t, w, ph) cos(w*t+ph); % signal function

integral = integralfuncrect(dt, s(time, w,

ph1).*s(time, w, ph2)); % scalar dot func

i2 = @(t) 1/2/w*cos(w*t+2*w*t0+ph_sum).*sin(w*t);

% harmonical part

i3 = @(t) t/2*cos(ph_dif);

% linear part

%% Plotting

figure(); hold on; grid on;

title('Scalar multiplication for sin/cos');

xlabel('Tims, t');

ylabel('Function, s(t)');

plot(time, s(time, w, ph1),'r--', 'DisplayName',

's_1(t)'); % plot s1

plot(time, s(time, w, ph2),'b--', 'DisplayName',

's_2(t)'); % plot s2

plot(time, s(time, w, ph1).*s(time, w, ph2),'k--',

'DisplayName', 's_1*s_2(t)'); % plot s1*s2

plot(time, integral(:, 1), 'k', 'DisplayName',

'<s_1*s_2>'); % plot <s1, s2>

plot(time, i2(time)-i2(t0), 'm', 'DisplayName',

'<s_1*s_2> harm part'); % harm <s1, s2>

plot(time, i3(time)-i3(t0), 'g', 'DisplayName',

'<s_1*s_2> linear part'); % linear <s1, s2>

scatter(tzero, i2(tzero)+i3(tzero)-i2(t0)-i3(t0),

50, 'filled', 'r', 'DisplayName', '<s_1*s_2>

zeros'); % <s1, s2> @ zeros

legend('Location', 'best');

F. Matlab code 6. Error estimation for sine noise

L = 1; % summation time

r = 1; % series base: 1=odd,

2=even, ...

N = 5; % steps number (to each

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 8, no.6, 2020

51

direction)

w0 = pi/L*r; % ortho base

w_step = 2*pi/L; % ortho step

dw_rel = -r/2:0.1:N; % freq shift in steps,

from zero frequency

w2 = w0 + dw_rel*w_step;% noise frequency

w_sum = w0 + w2; % summary freq

w_dif = w0 - w2; % differential freq

sinc2 = @(x) sinc(x/pi);% instead of matlab sinc =

sin(pi*x)/(pi*x)

%% Plotting

hold on; grid on;

title(strcat('Error estimation for sine noise for

\omega=',num2str(r),'*\pi/L'));

xlabel('Frequency difference,

\Delta\omega/(2\pi/L)');

ylabel('Scalar product');

plot(dw_rel, abs(sinc2(w_sum*L/2)) +

abs(sinc2(w_dif*L/2))); % |sinc(w+/2L)| +

|sinc(w-/2L)|;

plot([-r/2 -r/2],[0 2*abs(sinc2(w0*L/2))]);

legend('Scalar product error', 'Zero frequency,

\omega=0');

G. Matlab code 7. Two complex sine waves scalar

product

s = [1 2*pi pi/2; 1 pi pi/4]; %

signal params [A w phase]

N = 1000; %

accuracy = samples number

C = 1; %

periods to plot

%% Processing

csine = @(s, t) s(1)*exp(j*(s(2)*t+s(3))); % sine

wave: A exp(j(wt+phi));

L = C*2*pi/abs(s(1,2)-s(2,2)); % C

periods with duration L

dt = L/(N-1); % time

step

t = dt*(0:N-1); %

timeline = 2 periods

sp = integralfuncrect(dt, csine(s(1,:),

t).*conj(csine(s(2,:), t))); % scalar product

%% Display

plotc = @(t, x, varargin) plot3(t, real(x),

imag(x), varargin{:}); % plot as (t,Re,Im)

figure(); hold on; grid on; view(30, 30);

title('Complex sine waves scalar product');

xlabel('Time'); ylabel('Real');

zlabel('Imaginary');

quiver3(0, 0, 0, L, 0, 0, 0, 'Color', [.5 .5 .5]);

% Time axe

plotc(t, csine(s(1,:), t), 'r--');

% display s1

plotc(t, csine(s(2,:), t), 'b-');

% display s2

plotc(t, sp, 'k', 'LineWidth', 2);

% display <s1, s2>

tmp = max(abs(sp))-abs(sp);

% display local mininums

[pks, locs] = findpeaks(tmp);

scatter3(t(locs), real(sp(locs)), imag(sp(locs)),

'k');

legend('Timeline', 's_1', 's_2', '<s_1, s_2>',

'Zero points');

H. Matlab code 8. Scalar product for frequency

difference

t0 = 0; % start time

L = 2; % duration (summation time)

dp = 0; % phase difference

N = 1000; % accuracy to plot

%% Processing

W = 2*pi/L; % ortho system frequency step

(for L)

dw = W/N; % plotting step

w = -3*W:dw:3*W; % frequencies line

wz = -3*W:W:3*W; % zero frequencies

err = @(w) L*exp(j*dp)*exp(j*w*t0).*csinc(w*L); %

scalar product function

e = err(w); % error value

z = err(wz); % zeros

%% Display in Re, Im

figure(); hold on; grid on; view(30, 30);

title('a) Complex sines scalar product on L:

Re/Im');

xlabel('Frequency difference, \omega^-

/\Delta\omega'); ylabel('Re'); zlabel('Im');

plot3(w/W, real(e), imag(e)); % plot scalar

product

scatter3(wz/W, real(z), imag(z)); % plot zeros

legend('<f, g>_L', 'm\Delta\omega = zeros');

%% Display in Re, Im

figure(); hold on; grid on; view(30, 30);

title('b) Complex sines scalar product on L:

Abs/Angle');

xlabel('Frequency difference, \omega^-

/\Delta\omega'); ylabel('Abs'); zlabel('Angle');

plot3(w/W, abs(e), angle(e)); % plot scalar

product

scatter3(wz/W, abs(z), angle(z)); % plot zeros

plot(w/W, L*power(2*(1-cos(w*L))./power(w*L, 2),

1/2), 'LineWidth', 2); % plot abs

legend('<f, g>_L', 'm\Delta\omega = zeros', 'Abs

|<f, g>_L| = max error');

csinc.m
function y = csinc(x)

 iz = find(x==0);

 y = -j*(exp(j*x)-1)./x;

 y(iz) = 1;

end

I. Matlab code 9. FFT restore algorithm

%% Parameters

L = 3; % time to detect

w0 = 50*pi/L; % ortho system

base frequency

M = 4; % number of waves

(information numbers)

Z = rand(1, M)+j*rand(1, M); % information

numbers

env_scale = 128; % DFT envelope

scale factor

%% Preprocessing

csine = @(t, w, ph) exp(j*(w*t+ph)); % wave signal

w_step = 2*pi/L; % system

frequency step

ws = w0 + w_step*(0:size(Z, 2)-1); % system

frequencies vector

ps_sender = 1*2*pi*rand(1, M); % system

phases (random) vector for sender

ps_receiver = ps_sender; % system

phases (random) vector for receiver

N = M; % number of

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 8, no.6, 2020

52

samples: N>=M

dt = L/N; % sampling

time step

t = dt*(0:N-1); % sampling

timeline

tick = dt/256; % continuous

time step (for plot)

time = tick*(0:L/tick-1); % continuous

timeline

%% Ortho signal forming

s = 0*time;

samples = 0*t;

for n = 1:M

 s = s + Z(n)*csine(time, ws(n), ps_sender(n));

 samples = samples + Z(n)*csine(t, ws(n),

ps_sender(n));

end

%% FFT restore

Z_fft = 1/N*fft(samples.*exp(-j*(t*w0)));

% rotate with t = {n*dt}, n=0..N-1;

Z_fft(1:M) = Z_fft(1:M).*exp(-j*ps_sender);

% rotate phases back

Z_env = dft_scale(Z_fft, env_scale);% DFT envelope

%% Display signal and samples

figure(); hold on; grid on;

title('a) Signal'); xlabel('t'); ylabel('Re');

zlabel('Im');

plot3(time, real(s), imag(s), 'k');

% display continuous

scatter3(t, real(samples), imag(samples), 'k',

'filled'); % display signal samples

%% Display numbers & FFT results

figure(); hold on; grid on; view(45, 45);

title('d) Scalar product results(FFT and

matrix)');

xlabel('m'); ylabel('Re S_m'); zlabel('Im S_m');

scatter3(0:N-1, real(Z), imag(Z), 'k', 'filled',

'DisplayName', 'FFT results');

scatter3(0:N-1, real(Z_fft), imag(Z_fft), 'r',

'DisplayName', 'FFT results');

plot3((0:env_scale*N-1)/env_scale, real(Z_env),

imag(Z_env), '-', 'DisplayName', 'DFT envelope');

legend('Location', 'best');

REFERENCES

[1] E. Tikhonov, M. Sneps-Sneppe. “Introduction to signal processing:

sine wave and complex signals”, International Journal of Open

Information Technologies, Vol. 7, No 3, March 2019, ISSN 2307-

8162.

[2] E. Tikhonov, M. Sneps-Sneppe. “Introduction to signal processing:

spectral representation”, International Journal of Open Information

Technologies, Vol. 7, No 4, April 2019, ISSN 2307-8162.

[3] E. Tikhonov, M. Sneps-Sneppe. “Introduction to signal processing:

sampled signals”, International Journal of Open Information

Technologies, Vol. 7, No 7, June 2019, ISSN 2307-8162.

[4] R.N. Bracewell. “The Fourier Transform”. Journal “V mire nauki”,

(Scientific American. Russian Language edition. Articles of

Scientific American, June 1989, Vol. 260, No. 6), No 8, 1989, pages

48–56.“Mir”, Moscow, ISSN 0208-0621.

[5] S. Lipschutz; M. Lipson (2009). Linear Algebra (Schaum’s Outlines)

(4th ed.). McGraw Hill. ISBN 978-0-07-154352-1.

[6] R.R. Gallager. "Information theory and reliable communication"

(1968), New York: John Wiley & Sons, Inc., ISBN W-471-29048-3.

[7] Emmanuel C. Ifeachor, Barrie W. Jervis (2001) "Digital Signal

Processing. A practical approach. Second edition". Prentice Hall;

ISBN: 0201-59619-9.

[8] [8] A.B Sergienko, Digital signal procrssing (Tsifrovaja obrabotka

signalov, in Russian) // Piter, 2002, ISBN 5-318-00666-3.

