
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 8, no.6, 2020 

 

 

41 

 

 

Abstract — Data transmission using orthogonal functions 

means combining base carrier signals (scaled by numbers of 

useful information) into one sent signal. Processing the mixed 

signal after receiving allows dividing it back into carriers and 

restoring useful numbers. 

What is the most compact set of complex sine waves for this? 

How will the random components of the spectrum between the 

system signals (or the imperfection of the parameters) affect 

the result? What is the algorithm for processing the received 

signal and what is the minimum time needed to obtain the 

initial information? These issues are discussed “from the 

bottom to up”, from simple physical considerations to 

mathematical expressions and processing algorithms in the 

MatLab package. 

Keywords — scalar product, sine waves, complex sine waves, 

complex signals, Fourier series, Discrete Fourier Transform, 

MatLab. 

I. INTRODUCTION 

The article continues the introduction to a signal 

processing tasks for radio astronomy measurements and 

satellite data collection at the “Ventspils International Radio 

Astronomy Center” of the Ventspils University of Applied 

Sciences. 

In previous papers, complex signal representation [1], 

spectral analysis principles [2] and sampling [3] were 

discussed. The current article is dedicated to a method 

sending information (flow of numbers) using sets of 

orthogonal sine waves. 

The rest of the paper is the following. Section 2 illustrates 

the physical principle of composing and decomposing a 

signal into base components, Section 3 presents the 

operation of the scalar product of functions. In Section 4 and 

Section 5, the method is applied to real and complex sine 

wave systems respectively. The Appendix contains the 

MatLab codes (used as the examples and produced 

illustration figures to all parts) for version MatLab 6.5 

(R2015a). 

II.  SIGNAL MIX 

The process of decomposition the signal into spectral 

components, considered in the paper [2] is reversible: the 

total signal can be obtained by summing various sine waves 

back. The use of the orthogonal base signal systems is 

similar, but there is a finite set of suitable reference 
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components instead of a continuous spectrum. To 

decompose them and extract the encoded information in the 

receiver, a special tool should be used - the scalar product of 

functions. 

This is illustrated in Fig.  1, which demonstrates the 

reconstruction of a signal from individual components 

(modified picture from [2] and [4]). 

 

 
Fig.  1. A single light signal forming by a prism from the 

components 

III. SCALAR PRODUCT OF SIGNALS 

In two-dimensional geometry there is a useful tool - the 

scalar product of vectors. It may be written in the form of 

the product of vector lengths by the cosine of the angle 

between them: 〈 ⃗  ⃗〉  | || |     , or in the form of 

Cartesian coordinates [5]: 〈 ⃗  ⃗〉           . Scalar 

product characterizes the similarity or mutual 

(in)dependence of these vectors: it is 0 when they are 

perpendicular. Another important property of the scalar 

product is that it reflects length (norm) of the vector: 

〈 ⃗  ⃗〉  | |     . 

The definition may be expanded with the preservation of 

its useful properties. For high-dimension geometry (with an 

arbitrary number of coordinates  ) an extended definition of 

the coordinate form is: 〈 ⃗  ⃗〉  ∑     
 
   . In the area of 

complex numbers its definition is refined: 〈 ⃗  ⃗〉  
∑     

  
    (the second vector coordinates are replaced with 

the conjugate [1]). This is done in order to preserve the 

property of square norm (| |      ). Since the complex 

conjugation of a real number is the same real number, this 

form is correct for all vectors, both real and complex. 

This definition is generalized for the case of continuous 

complex functions on a given parameter interval  . It is 

done as if the coordinates of the vector correspond to 

infinite number of infinitely small intervals, into which this 

interval is divided. Replacing the sum by the integral 

gives [5]: 

〈   〉  〈 ( )  ( )〉  ∫  ( )    ( )

    

  

   (1) 
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Where  ( ) and  ( )are multiplied functions, the time    

corresponds to the beginning, and the time   corresponds to 

the duration of the product calculation. 

Objects with zero scalar product are called orthogonal 

(for vectors this corresponds to perpendicularity). They are 

independent of each other in some senses (different for 

different types of multiplied objects). 

Scalar product has the property of linearity (for all 

cases): 〈         〉   〈   〉   〈   〉, where    

and   are numbers and  ,  ,   – multiplied objects 

(numbers, vectors, functions and etc.). Therefore, it is easy 

to restore all the coefficients (representing useful 

information) of a signal that is a linear combination of 

orthogonal (base) functions (with a help of the scalar 

product of this signal with these base functions). 

For example, if there are two orthogonal functions   and 

  (such that 〈   〉   ), constant numbers  ,   and signal 

 ( )     ( )     ( ): 
〈   〉  〈   ( )     ( )  ( )〉 

  〈   〉   〈   〉 ⏟  
  

  〈   〉 

   
〈   〉 
〈   〉 

 

(2) 

IV. REAL SINE WAVES 

A. Orthogonality of two sine waves 

Real sine waves can be written in mathematical form [1]: 

{
 ( )     (      )

 ( )     (      )
 (3) 

So their scalar product will be determined by the formula 

(using designations            
          

  
        

       ): 

〈   〉  ∫    (      )    (      )  

    

  

 
 

 
∫ [   (      )

    

  

    (      )]   

(4) 

These signals will be orthogonal on those calculation time 

intervals  , where their scalar product becomes zero. 

Consider all such possibilities for different initial cases. 

1) Trivial case (                   ): 

〈   〉  
 

 
∫ [   (  )     (  )]  

    

  

 
 

 
[   (  )     (  )]

       

(5) 

In this case, the base signals are constant, therefore either 

everywhere is orthogonal, or not everywhere. The case is 

obviously useless for transmitting information. 

2)  Case of equal/opposite frequencies 

This is the case of equal frequencies (        
            ) and reverse case of opposite 

frequencies (          ), leading to exactly the same 

results: 

〈   〉  
 

 
∫ [   (      )    (  )]  

    

  

 
     

 
 

⏟    
      

 
 

  
        (   [       ])

⏟                      
        

 

(6) 

The result is the sum of the linearly increasing (with 

calculation time  ) summand 
     

 
  and the product of two 

sinusoids (scaled by 
 

  
). Since each sinusoid value is 

limited to [    ], the second summand is in range 

[ 
 

  
 

 

  
] always. After a while the first summand will 

exceed it, so there will be no stable zeros. That is, functions 

may be orthogonal (i.e. zeros exist and depend on the initial 

parameters, in particular, the initial phases at the moment of 

the beginning of the summation) only for time lesser than 
 

     (  )
. For sufficiently long transmissions such functions 

are not suitable. 

The important case of zero linear growth (       , i.e. 

         
 

 
       ) is an exception. In this 

case, the phases of the original signals must differ by 
 

 
. That 

is, the signals are a sine and a cosine waves on the same 

frequency: 

{
 ( )      (    )

 ( )      (    )
 (7) 

The scalar product zeroes (orthogonality intervals) in this 

case always exist at points that doesn’t depend on the initial 

phases and the beginning of the summation moment: 

       . They correspond to calculation time intervals: 

  
 

 
      (8) 

Thus, at the same time we can transmit 2 numbers on the 

same frequency. In particular, these numbers can be 

interpreted as components of a two-dimensional vector. Or 

as parts of a complex number (real and imaginary 

components, or angle and length). In this sense, we can say 

that at each frequency one complex number can be 

transmitted. 

3) Common case of different frequencies (   
      ) 

〈   〉  
 

 
∫ [   (      )     (      )]  

    

  

 
 

 
[
   

   
 

   
 

   (
  (     )     

 
)

 
   

   
 

   
 

   (
  (     )     

 
)]

 
 

 
[        (   )          (   )] 

(9) 

 

Here the function       {
    

 
    

     
 and variables 

  
   

 
    

   

 
                       are 

used. 

Fig.  2 shows example of calculation time dependence for 

the scalar products for signals   ( )      (  ) and   ( )  
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   (
  

 
  

 

 
) by definition (4), realized by MatLab program, 

see Appendix A and B. 

 
Fig.  2. Signals and scalar product results in time for two sine 

waves 

Points of orthogonality (〈   〉   ) where function do 

not affect each other correspond to: 

        (   )           (   ) (10) 

The parameters   and   depend on the usually unknown 

random phases at the time of the beginning of the recovery 

(summation) and should not be relied upon. Although they 

may in some cases give additional time points at which the 

base functions will be mutually orthogonal (for example, 

where one or both of the cosines turn to 0), they will 

disappear even with small changes in the initial phase.  

Fig.  3 shows surface for (10) with zeros marked as peaks 

(see Appendix C) with random initial phases. 

 
Fig.  3. Plane of 〈   〉 possible values with peaks on zeros. 

Therefore, the stable solution is at points (taking into 

account the case in question:          ): 

{
       
       

 {
  

   

 
    

  
   

 
    

 {
         

  

 
     

         
  

 
     

 

(11) 

So all possible pairs of the orthogonal frequencies on the 

calculating time   are: 

{
 
 

 
    

 

 
(   )

   
 

 
(   )

            

 

{
 
 

 
  ( )     (

 

 
(   )    )

 ( )     (
 

 
(   )    )

           

 (12) 

Note, that at each of these frequencies, two basis signals 

(sine and cosine) can be used simultaneously in accordance 

with case 2. 

B. Orthogonal real sine waves system 

By the system of orthogonal waves we mean the set of  

base sine waves that do not affect each other at certain 

moments of the calculation (the same for all of them). 

As was shown in (12) following frequencies (and only 

them) will be orthogonal to each other on the time 

interval  : 

{
 
 

 
    

 

 
(   )

   
 

 
(   )

            

 {
     

   
  

 

}

 

{
 
 

 
    

 

 
      

 ⁄

      
  

 
     (  ⁄   )

         {    }

 

(13) 

It can be seen that the solution of this system for each   is 

divided into two independent sets of allowable frequencies 

{  }    and {  }     (each element in the set may 

correspond to its own    or   ; with a step    
  

 
 

between the nearby elements of the set). The first of them 

(odd) corresponds to    , the second (even) to    . 

In each set, any pair of frequencies orthogonal if their 

indexes   do not coincide and are not opposite. Therefore, 

the selection of any element from the set for a system of 

basic functions (for example, with the index    ) 

excludes for further use as the basic signal this element and 

its opposite (in current example, indexes     and   
  ). The remaining elements (for example, with indexes 

             ) remain available for further selection (for 

example, the next frequency in the system may correspond 

to     ). Therefore, for any index value | |, we can 

choose only one arbitrary sign of the frequency (positive or 

negative). 

Therefore, we obtain two series of orthogonal real sine 

wave systems: “even” and “odd”: 

{  }     {  

  

 
     } 

{  }    {  

  

 
(  

 

 
)     } 

(14) 
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Fig.  4. Two systems (series) of real orthogonal sine waves 

corresponding to restore time   

The “even” series with all positive frequencies is a 

classical Fourier series, which is usually proposed as a 

solution for orthogonal systems. The second is an 

additional one (with a frequency shift  
 

 
 from the Fourier 

series). Also, instead of any frequency equal opposite one 

could be used. Any other frequency will not be orthogonal 

on the chosen interval  , and it will distort the restored 

values according to (9) if it is present in the total signal. 

Since all sine waves from same set cease to influence 

each other at the same moment of calculations  , the set can 

be divided into an arbitrary number of subsets (independent 

“channels”) in an arbitrary way. For example, we can 

alternate the frequency of channels in turn, group by several 

sequence numbers, and so on. 

 
Fig.  5. Orthogonal frequency system channeling example 

(colors correspond to different channels). 

C. Composition and decomposition algorithms 

To restore the original information values, it is necessary 

not only to ensure that in each receiving channel the 

contributions of all the others are extinguished, but also to 

consider how this channel is scaled when processing. Scalar 

product of a function on itself (     ,      ,  

       ): 

〈   〉  
 

 
∫ [   (      )  ]  

    

  

 
 

  
        (       

   ) 
 

 
 

(15) 

At the moments of completing the summation (  

 

 
     ), it equals to: 

〈   〉
  

 
 
 
 

 

 
 

 

  
 (16) 

Thus, to restore the information (linear factors of the basis 

functions) from the mixed signal  ( )    ( )    ( ), we 

must to multiply corresponding scalar product by 
 

  
 

In summary: for real sine wave systems, choosing the 

reference frequency step    (or the desired calculation time 

  for each information numbers packet, that is related by the 

ratio    
  

 
) we should form the mixed signal, scaling 

“odd” or “even” sine series (initial phases on the transmitter 

and receiver    and    do not matter) with useful 

information numbers    and   : 

     ( )  ∑ [       (
  

 
 

   

   

   )       (
  

 
    )] 

 

    ( )  ∑ [       (
  

 
(  

 

 
)

   

   

   )       (
  

 
(  

 

 
)

   )] 

(17) 

For the next interval   we could use the following scaling 

numbers. That forms transmitted information flow with data 

rate limited to time   for one dose. 

To restore the information numbers from mixed signal, 

the receiver must calculate scalar product with each base 

functions from the series: 

   
 

 
∫      ( )    (

  

 
    )  

    

  

 
 

 
∫     ( )    (

  

 
(  

 

 
)

    

  

   )   

 

   
 

 
∫      ( )   (

  

 
    )  

    

  

 
 

 
∫     ( )   (

  

 
(  

 

 
)

    

  

   )   

(18) 

This can be done both with an analog circuit or using 

digital signal processing (taking into account the necessary 

sampling intervals and frequency limits with bandwidth 

filters). 
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Fig.  6. Signal composition (a, c) and decomposition (b, d) using 

odd (a, b) and even (c, d) series of orthogonal sine waves, see 

Matlab code in Appendix A, D. 

D. Deviations and errors 

The scalar product of base reference signals is strictly 

zero at a control points only if all relations are strictly 

precise. If the equality is only approximate, then the 

numbers recovered at the receiver will differ from the 

original numbers. 

1) Deviation of the initial phases 

As was shown in equation (11), for sine waves with 

different frequencies (base signals) the initial phase does not 

affect the recovery. 

Another situation for the deviations of sine and cosine 

waves on the same frequency. In this case, the linear error 
 

 
      will accumulate at each step   (which will cause 

the numbers to be restored incorrectly), and after a time 
 

     (  )
  they will completely diverge. Therefore, it is 

necessary to synchronize the phase difference of the 

reference signals at the sender, for example, to get them 

from a single source of harmonic oscillations and form a 

phase rotation. Zeroing the current processed value for this 

at each step   could partially compensate that. 

Example of cumulative error is shown in Figure 7 for 

signals       (  ) and       (    
 

  
), constructed 

with Matlab code in Appendix A and E. The same situation 

but on a large scale is with an arbitrary phase difference   . 

 
Fig.  7. Restoring error (and shift of zeros) accumulation with 

almost orthogonal one-frequency sine waves phase deviation 
 

  
. 

Linear error is green and periodical is magenta. 

2) Frequencies deviation 

Using the scalar product formula (9), we can estimate the 

maximum possible error as |    
   

 
|  |    

   

 
|  

depending on the presence of non-orthogonal sine wave in a 

signal for the most unfortunate case of random phases. 

For example, with the amplitudes of interference equal to 

1 each we obtain the dependence according to Fig.  8 for 

sine waves with base (smallest) frequency      (see 

Appendix F): 

 
Fig.  8. Restoring maximum error estimation for sine wave 

shifted from processed. Zeros corresponding to orthogonal 

frequencies. 

3) Deviation of computation time: several 

computation cycles and guard intervals 

If the actual calculation time does not correspond to the 

planned time  , then in both cases of equal and different 
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frequencies an error corresponding to equations (6) or (9) 

will be made when calculating the scalar product. The bias 

can also occur due to imperfect timers or a shift in the start 

of the calculation. 

To reduce the error (and in the best case, a complete 

exception), you can use the following tricks: 

1. Transmit the summary signal for a time slightly 

exceeding the required  .  

2. Between the changes of the sine waves coefficients 

(information numbers), insert zero-valued 

“protective” windows with nothing transmitted (a 

zero signal will not make any contribution to the 

calculated). 

The value of these corrections could be fixed as the 

estimated maximum deviations of the calculation time from 

the generation time or more. 

V. COMPLEX SINE WAVES 

As shown in Section 4, two arbitrary numbers can be 

transmitted at each frequency. In particular, we can use this 

frequency to transmit both components of one complex 

number, that is one complex number. In other words, at each 

frequency a real transmission of one complex sine wave is 

possible. 

A. Two orthogonal complex waves 

Equation for two complex sine waves   and  , as it was 

shown in [1]: 

{
 ( )    (      )

 ( )    (      )
 (19) 

On interval   (starting from time   ) scalar product for 

them will be (        ,         ) as follows: 

〈   〉  ∫   (      )⏟      
 ( )

   (      )⏟      
  ( )

    

  

  

     
∫        

    

  

     (       )      (   ) 

(20) 

Fig.  9 shows dependence of the current value of the 

scalar product definition (1) example for the functions 

     (     
 ⁄ ),      (     

 ⁄ ) calculated from the initial 

time    with duration  , realized by MatLab program, see 

Appendix A and G. 

 
Fig.  9. Scalar product of function for complex sine waves 

Here the function      ( ) is introduced - the extension 

of the function     ( ) to the space of complex numbers: 

     ( )  {
     

  
    

     

 {
    

 

⏞
         

  
      

 

⏞      
  

    

     

 

(21) 

Since       (      )   , this function gives the exact 

value for the integral, including the case of equal 

frequencies (          ). Particularly, 〈   〉  
〈   〉   . Zero points of scalar product for any different 

sine waves with       (that does not depend on initial 

phases) determine the exact relationship of the difference in 

their frequencies and the summation time interval: 

           
  

 
           (22) 

B. Deviation of frequencies or phases 

What happens if instead of the orthogonal signal  ( ) 
another complex sine wave  ̃( ) will be received? Since the 

phase (       ) is generally be unknown, the scalar 

product of   and  ̃ (with the amplitude  ) could be 

arbitrary, but the deviations of its real and imaginary 

components will not exceed the error proportional to its 

module: 
|   (〈   〉 )| |   (〈   〉 )|  |     (   )|   

   
     (   )

(   ) 
 

(23) 

shows dependence of the scalar product result (from the 

initial time      with duration    ) according to 

equation (20) for complex sine wave signals    ( )  

      and    ( )        (with different frequencies) on 

the relative frequency difference 
  

  
 

     
  

 ⁄
 in the Real / 

Imaginary representation (Fig.  10, а) and Abs / Angle 

representation (Fig.  10, и). The circles indicate those 

frequency differences (according (22) correspond to points 

        ) where the scalar product is 0, i.e. the 

functions are orthogonal in the indicated calculation 

interval. The graph is built in the MatLab program, see 

Appendix H. 
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Fig.  10. Scalar product of function for different frequency 

differences. 

It can be seen that certain frequencies (with a step 

   
  

 
 between them) do not affect  , since their complex 

sine wave is orthogonal to it. Others will lead to 

corresponding error. The same will be true for each of the 

orthogonal frequencies forming the orthogonal system as 

follows (but, of course, for them there will be their own 

distance from the interference frequency    ). 
This allows us to evaluate both the calculation error 

associated with the deviation of the frequency at the receiver 

(from the transmitter frequency) and the influence of 

extraneous inclusions in the information signal within the 

bandwidth range. 

C. Multiple orthogonal complex sine waves system 

If we want to use more than two sine waves for 

transferring values, then we need all of them to be mutually 

orthogonal at the same known time of the calculation   (any 

other non-orthogonal components will distort the calculated 

numbers as shown in the previous subsection) [6]. 

If the minimum frequency in system is   , and the 

calculation time is   (so minimal frequency difference is 

   
  

 
), then all frequencies that are multiple of the step 

   it will be orthogonal to it at time   - and only these. But 

they also will be orthogonal to each other at this moment – 

since they are also separated by a multiple of the same steps 

  . Thus, these two parameters determine any complex sine 

waves orthogonal system (phases can be arbitrary): 

      
  

 
    ( )   

 ((   
  
 

 )    )
 

          

(24) 

Fig.  11 illustrates a system of mutually orthogonal 

frequencies    for integer non-negative parameters   

according to equation (24). 

 
Fig.  11. Orthogonal complex sine waves system visualization. 

Thus, the principle of generating a signal  ( ) and 

restoring information (a set of complex amplitude {  } from 

that) for   base complex sine 

waves   ( )    (      )    [      ], orthogonal on 

the interval   (i.e.       
  

 
         ) is as 

follows: 

 ( )  ∑     ( )

   

   

 ∑     (      )

   

   

      ∑     (
  
 

     )

   

   

 

   
 

 
〈 ( )   ( )〉 

 
 

 
∫  ( ) 

  ((   
  
 

  )    )
  

    

  

 

(25) 

D. Decomposition algorithm 

Various algorithms for restoring the original numbers 

using the above formulas could be offered: an analog circuit 

that directly implements actions, numerical calculation of 

the integral, or the corresponding matrix form. But the most 

effective is the algorithm that uses Discrete Fourier 

Transform (DFT) [3], [7]. 

The original formula for a signal assembled from basic 

complex sinusoids is similar to DFT. After some formal 

transformations for sampling points with a step   (so that 

the entire time period for calculating the scalar product is 

    , where   where N is the number of samples of the 

signal): 

 ( )      ⏟      
  ( )

 ∑ (       ⏟      
  

 

)  
  
 

  

   

   

   (  )

 ∑   
   

  
 

  

   

   

 

(26) 

That is exactly inversed DFT multiplied by  . Therefore, 

to obtain the     can use the direct discrete Fourier 

transform (with its fast FFT algorithms [8]) for the samples 

  
 , divided by  : 
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∑   

  
  

  
 

  

   

   

 (27) 

Important question:  what number of samples   should 

we use? According to the Kotelnikov theorem [3] it should 

be defined by the doubled maximum signal frequency 

    . But this condition arose so that cyclic copies of the 

continuous spectrum (arising from signal sampling) located 

in the interval [           ] do not overlap each other. In 

our case there are no negative frequencies in spectrum (all 

difference frequencies are    multiplied by positive 

integer). Therefore, the minimum time sampling step is two 

times less and is equal to the inverse maximum frequency: 

  
 

    
 

  

    
 

  

   
 (28) 

 

 
Fig.  12. Common sampled signal spectrum (a) and case of 

orthogonal sine waves system (b) 

Fig.  12 illustrates the difference between the sampled 

spectrum of some arbitrary signal (a) containing negative 

frequencies and a set of complex sine waves with only 

positive frequency differences (b). In both cases, the 

spectrum duplicated with copies, but the minimum 

frequency distance of copying without overlapping for case 

(b) can be 2 times smaller. 

The required number of signal samples in this case is 

   . Only   samples are sufficient, even for very high 

frequencies of the mixed signal. The Fast Fourier Transform 

(FFT) algorithm requires ~       operations. Hence the 

initial coefficients (information numbers): 

     
       

     

 
∑(   

       
)   

  
 

  

   

   

 (29) 

Fig.  13 (a) shows the signal  ( ), which is the sum of 4 

complex sine waves (base frequency     ; the step 

between the frequencies     
 ⁄ , the initial phases are 

random), scaled by random complex numbers    (which are 

useful information transmitted) and signal samples    

needed to restore these numbers. Fig.  13 (b) shows the 

result    of applying the discrete Fourier transform (exactly 

coinciding with the original information numbers) to these 

samples set {  } and the envelope of the discrete spectrum. 

Figures obtained in MatLab program – see Appendix I. 

 

 
Fig.  13. Signal as the set of orthogonal complex sine waves (a) 

and information (scale factors) restoring using FFT (b). 

The processing algorithm is as follows: getting   

samples    from the original signal  ( ), multiplying each 

of them by        . Carrying out FFT for the obtained set 

of numbers, obtaining   
 . To obtain the initial data    – 

scaling with  
 

 
 and phase rotation according to initial 

complex sine waves:       . These phases can be 

determined, for example, by transmitting known set of 

numbers at all base frequencies, for example {       }. 

VI. CONCLUSION 

The article briefly described the issues of information 

transfer (complex numbers) using a system of orthogonal 

functions. The design of such a system is discussed (and 

possible errors with deviations) as well as the MatLab 

algorithm is proposed to recover information from the 

generated mixed signal with operation time slowly increases 

from the number of transmitted numbers (even for high 

frequencies). Thus, this method can be an effective way of 

transmitting information. 
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APPENDIX 

A. Matlab code 1. Numerical integral as function of 

upper limit function 

integralfuncrect.m 
%% Numerical integral as a function 
% dt - integration step, tn = t0+dn*n 

% f  - function vector = [f1(t0) f1(t1) ...; 

f2(t0) f2(t1) ...; ...] 

function i = integralfuncrect(dt, f)     
    v = zeros(1, size(f, 1));           % current 

integral value 

    i = zeros(size(f, 2), size(f, 1));  % function 

of integral, I(0) = 0; 

    for n = 2:size(f, 2); 
        v = v + conj(f(:,n))'; 
        i = [i; v]; 
    end 
    i = i*dt; 
end 

B. Matlab code 2. Two sine waves scalar product 

w1 = pi;                        % 1st frequency 

p1 = 0;                         % 1st phase 

s1 = @(t) cos(w1*t+p1);         % 1st sine wave 

  

w2 = 2/3*pi;                    % 2nd frequency 

p2 = pi/2;                      % 2nd phase 

s2 = @(t) cos(w2*t+p2);         % 2nd sine wave 

  

dt = 0.01;                      % time step 

  

  

L = 2*pi/abs(w1-w2);            % zero times 

time = 0:dt:3.5*L;              % timeline 

izero = round((0:3)/dt*L)+1;    % zero indexes 

  

% scalar function in time 

Integral = integralfuncrect(dt, 

[s1(time).*s1(time); s1(time).*s2(time); 

s2(time).*s2(time)]); 

  

%% Plot 

  

figure(); 

hold on; grid on; 

  

title('<s1, s2>(t)'); 

xlabel('Time, t'); 

ylabel('Value f(t)'); 

  

plot(time, s1(time),'r:');                           

% plot s1 

plot(time, s2(time),'b:');                           

% plot s2 

plot(time, s1(time).*s2(time),'k--');                           

% plot s2 

  

plot(time, integral(:, 1), 'r-');                     

% plot <s1, s1> 

plot(time, integral(:, 3), 'b-');                     

% plot <s1, s2> 

plot(time, integral(:, 2), 'k-');                     

% plot <s1, s2> 

  

scatter(izero*dt, integral(izero, 1), 50, 

'filled', 'r'); 

scatter(izero*dt, integral(izero, 3), 50, 'b'); 

scatter(izero*dt, integral(izero, 2), 50, 

'filled', 'k'); 

  

legend('s1(t)', 's2(t)', 's1(t)*s2(t)', '<s1, 

s1>', '<s2, s2>', '<s1, s2>'); 

C. Matlab code 3. Two sine waves scalar product plane 

%% sinc(x)cos(x+u)+sinc(y)cos(y+u) plane 

  

N = 3;              % number of [-pi pi] intervals 

shown 

acc = 20;           % accuracy of a plot 

  

u = 2*pi*rand(1,1); % random u 

v = 2*pi*rand(1,1); % random v 

  

%% Processing 

dx = pi/acc; 

dy = pi/acc; 

  

[x, y] = meshgrid(-pi*N:dx:pi*N, -pi*N:dy:pi*N);       

% xy matrix 

z = (sinc(x/pi).*cos(x+u) + sinc(y/pi).*cos(y+v));     

% sinc = sin(pi*x)/(pi*x) 

  

scale = max(max(abs(z)))*3;        % peak height 

calculating 

z(abs(z)<0.00001) = scale;         % peak instead 

zero 

  

%% Plotting 

hold on; grid on; view(143, 48); 

  

title('Peaks on zeros of 

<f,g>=sinc(x)cos(x+u)+sinc(y)cos(y+v)'); 

xlabel('x'); ylabel('y'); zlabel('<f, g> peaked'); 

  

surf(x, y, z, 'EdgeColor', 'none'); 

D. Matlab code 4. Orthogonal sines based signal 

composition and restoring 

w0 = pi;        % base frequency 

t0 = 0;         % start time 

N = 1;          % cycles 

acc = 100; 

  

X = [1 2 3];  % information 1 

Y = [4 5 6];  % information 2 

  

phs = 2*pi*rand(size(X, 2), 1)-pi;  % random 

phases for cos 

  

%% Processing 

L = pi/w0; 

dt = L/acc; 

t1 = t0+L*N; 

time = t0:dt:t1;          % timeline 

tzero = t0:L:t1;          % zero points 

  

  

sn_even_cos = @(t, n) -cos(2*w0*n*t+phs(n));      

% even (Fourier) cos 

sn_even_sin = @(t, n) sin(2*w0*n*t+phs(n));       

% even (Fourier) sin 

  

sn_odd_cos = @(t, n) cos(2*w0*(n-1/2)*t+phs(n));  

% odd series cos 

sn_odd_sin = @(t, n) sin(2*w0*(n-1/2)*t+phs(n));  

% odd series sin 

  

%% Form even series (Fourier) 

subplot(2, 2, 1); 

hold on; grid on; 

  

title('a) Even series signal'); 

xlabel('t'); ylabel('s_{even}(t)'); 

  

s_even = zeros(1, size(time, 2));        % init 

signal 1 

for i=1:size(X, 2) 
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    plot(time, X(i)*sn_even_cos(time, i), '--', 

'DisplayName', strcat('cos_',num2str(i))); 

    plot(time, Y(i)*sn_even_sin(time, i), '--', 

'DisplayName', strcat('sin_',num2str(i))); 

  

    s_even = s_even + X(i)*sn_even_cos(time, i) + 

Y(i)*sn_even_sin(time, i); 

end 

  

plot(time, s_even, 'k-', 'DisplayName', 

's_{even}(t)'); 

  

legend('Location', 'best'); 

  

%% Form odd series 

subplot(2, 2, 3); 

hold on; grid on; 

  

title('c) Odd series signal'); 

xlabel('t'); ylabel('s_{odd}(t)'); 

  

s_odd = zeros(1, size(time, 2));        % init 

signal 1 

for i=1:size(X, 2) 

    plot(time, X(i)*sn_odd_cos(time, i), '--', 

'DisplayName', strcat('cos_',num2str(i))); 

    plot(time, Y(i)*sn_odd_sin(time, i), '--', 

'DisplayName', strcat('sin_',num2str(i))); 

  

    s_odd = s_odd + X(i)*sn_odd_cos(time, i) + 

Y(i)*sn_odd_sin(time, i); 

end 

  

plot(time, s_odd, 'k-', 'DisplayName', 

's_{odd}(t)'); 

 

legend('Location', 'best'); 

  

%% Processing: new phases 

phs = 2*pi*rand(size(X, 2), 1)-pi;  % random 

phases for cos 

  

%% Restoring even series (Fourier) 

subplot(2, 2, 2); 

hold on; grid on; 

  

title('b) Even series restoring'); 

xlabel('t'); ylabel('X_{even}(t)'); 

  

for i=1:size(X, 2) 

    integral = 2/L*integralfuncrect(dt, 

[s_even.*sn_even_cos(time, i); 

s_even.*sn_even_sin(time, i)]); 

 

% plot <s, cos>  

    plot(time, integral(:, 1), 'DisplayName', 

strcat('<s*cos_',num2str(i),'>'));  

% plot <s, sin> 

    plot(time, integral(:, 2), 'DisplayName', 

strcat('<s*sin_',num2str(i),'>')); 

  

    scatter(tzero, integral(1+tzero/dt, 1), 50, 

'filled', 'r', 'DisplayName', 

strcat('X_',num2str(i))); % <s1, s1> @ zeros 

    scatter(tzero, integral(1+tzero/dt, 2), 50, 

'filled', 'b', 'DisplayName', 

strcat('Y_',num2str(i))); % <s1, s1> @ zeros 

end 

  

legend('Location', 'best'); 

  

%% Restoring odd series 

subplot(2, 2, 4); 

hold on; grid on; 

  

title('d) Odd series restoring'); 

xlabel('t'); ylabel('X_{odd}(t)'); 

  

for i=1:size(X, 2) 

    integral = 2/L*integralfuncrect(dt, 

[s_odd.*sn_odd_cos(time, i); 

s_odd.*sn_odd_sin(time, i)]); 

  

% plot <s1, s1> 

    plot(time, integral(:, 1), 'DisplayName', 

strcat('<s*cos_',num2str(i),'>'));  

% plot <s1, s1> 

    plot(time, integral(:, 2), 'DisplayName', 

strcat('<s*sin_',num2str(i),'>'));  

  

    scatter(tzero, integral(1+tzero/dt, 1), 50, 

'filled', 'r', 'DisplayName', 

strcat('X_',num2str(i))); % <s1, s1> @ zeros 

    scatter(tzero, integral(1+tzero/dt, 2), 50, 

'filled', 'b', 'DisplayName', 

strcat('Y_',num2str(i))); % <s1, s1> @ zeros 

end 

  

legend('Location', 'best'); 

E. Matlab code 5. Phase error summation 

%% Parameters 

L = 1;          % time to sum         

N = 4;          % number of cycles 

  

t0 = 2;         % start time 

dt = L/10;      % time step 

  

w = pi/L;       % sin/cos frequency 

  

ph1 = 0;          % s1 (cos) phase 

ph2 = pi/2-pi/50; % s2 (sin) phase 

  

%% Processing 

time = t0:dt:(t0+N*L);  % timeline 

tzero = t0:L:(t0+N*L);  % zero points 

  

ph_dif = ph1 - ph2;     % phases dif 

ph_sum = ph1 + ph2;     % phases sum 

  

s = @(t, w, ph) cos(w*t+ph);    % signal function 

  

integral = integralfuncrect(dt, s(time, w, 

ph1).*s(time, w, ph2));    % scalar dot func 

i2 = @(t) 1/2/w*cos(w*t+2*w*t0+ph_sum).*sin(w*t);   

% harmonical part 

i3 = @(t) t/2*cos(ph_dif);                          

% linear part 

  

%% Plotting 

figure(); hold on; grid on; 

title('Scalar multiplication for sin/cos'); 

xlabel('Tims, t'); 

ylabel('Function, s(t)'); 

  

plot(time, s(time, w, ph1),'r--', 'DisplayName', 

's_1(t)');     % plot s1 

plot(time, s(time, w, ph2),'b--', 'DisplayName', 

's_2(t)');     % plot s2 

plot(time, s(time, w, ph1).*s(time, w, ph2),'k--', 

'DisplayName', 's_1*s_2(t)');   % plot s1*s2 

  

plot(time, integral(:, 1), 'k', 'DisplayName', 

'<s_1*s_2>');       % plot <s1, s2> 

plot(time, i2(time)-i2(t0), 'm', 'DisplayName', 

'<s_1*s_2> harm part');   % harm <s1, s2> 

plot(time, i3(time)-i3(t0), 'g', 'DisplayName', 

'<s_1*s_2> linear part'); % linear <s1, s2> 

  

scatter(tzero, i2(tzero)+i3(tzero)-i2(t0)-i3(t0), 

50, 'filled', 'r', 'DisplayName', '<s_1*s_2> 

zeros'); % <s1, s2> @ zeros 

  

legend('Location', 'best'); 

F. Matlab code 6. Error estimation for sine noise 

L = 1;                  % summation time 

r = 1;                  % series base: 1=odd, 

2=even, ... 

N = 5;                  % steps number (to each 
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direction) 

  

w0 = pi/L*r;            % ortho base 

w_step = 2*pi/L;        % ortho step 

  

dw_rel = -r/2:0.1:N;    % freq shift in steps, 

from zero frequency 

w2 = w0 + dw_rel*w_step;% noise frequency 

  

w_sum = w0 + w2;        % summary freq 

w_dif = w0 - w2;        % differential freq 

  

sinc2 = @(x) sinc(x/pi);% instead of matlab sinc = 

sin(pi*x)/(pi*x) 

  

%% Plotting 

hold on; grid on; 

  

title(strcat('Error estimation for sine noise for 

\omega=',num2str(r),'*\pi/L')); 

xlabel('Frequency difference, 

\Delta\omega/(2\pi/L)'); 

ylabel('Scalar product'); 

  

plot(dw_rel, abs(sinc2(w_sum*L/2)) + 

abs(sinc2(w_dif*L/2)));   % |sinc(w+/2L)| + 

|sinc(w-/2L)|; 

plot([-r/2 -r/2],[0 2*abs(sinc2(w0*L/2))]); 

  

legend('Scalar product error', 'Zero frequency, 

\omega=0'); 

G. Matlab code 7. Two complex sine waves scalar 

product 

s = [1 2*pi pi/2; 1 pi  pi/4];              % 

signal params [A w phase] 

N = 1000;                                   % 

accuracy = samples number 

C = 1;                                      % 

periods to plot 

%% Processing 

csine  = @(s, t) s(1)*exp(j*(s(2)*t+s(3))); % sine 

wave: A exp(j(wt+phi)); 

  

L = C*2*pi/abs(s(1,2)-s(2,2));              % C 

periods with duration L 

dt = L/(N-1);                               % time 

step 

t = dt*(0:N-1);                             % 

timeline = 2 periods 

sp = integralfuncrect(dt, csine(s(1,:), 

t).*conj(csine(s(2,:), t))); % scalar product 

 

%% Display 

plotc = @(t, x, varargin) plot3(t, real(x), 

imag(x), varargin{:}); % plot as (t,Re,Im) 

  

figure(); hold on; grid on; view(30, 30); 

title('Complex sine waves scalar product'); 

xlabel('Time'); ylabel('Real'); 

zlabel('Imaginary'); 

quiver3(0, 0, 0, L, 0, 0, 0, 'Color', [.5 .5 .5]);     

% Time axe 

  

plotc(t, csine(s(1,:), t), 'r--');                     

% display s1 

plotc(t, csine(s(2,:), t), 'b-');                      

% display s2 

plotc(t, sp, 'k', 'LineWidth', 2);                     

% display <s1, s2> 

  

tmp = max(abs(sp))-abs(sp);                            

% display local mininums 

[pks, locs] = findpeaks(tmp); 

scatter3(t(locs), real(sp(locs)), imag(sp(locs)), 

'k'); 

  

legend('Timeline', 's_1', 's_2', '<s_1, s_2>', 

'Zero points'); 

H. Matlab code 8. Scalar product for frequency 

difference 

t0 = 0;             % start time 

L = 2;              % duration (summation time) 

dp = 0;             % phase difference 

N = 1000;           % accuracy to plot 

%% Processing 

W = 2*pi/L;         % ortho system frequency step 

(for L) 

dw = W/N;           % plotting step 

  

w = -3*W:dw:3*W;    % frequencies line 

wz = -3*W:W:3*W;    % zero frequencies 

  

err = @(w) L*exp(j*dp)*exp(j*w*t0).*csinc(w*L); % 

scalar product function 

e = err(w);         % error value 

z = err(wz);        % zeros 

 

%% Display in Re, Im 

figure(); hold on; grid on; view(30, 30); 

title('a) Complex sines scalar product on L: 

Re/Im'); 

xlabel('Frequency difference, \omega^-

/\Delta\omega'); ylabel('Re'); zlabel('Im'); 

  

plot3(w/W, real(e), imag(e));      % plot scalar 

product 

scatter3(wz/W, real(z), imag(z));  % plot zeros 

legend('<f, g>_L', 'm\Delta\omega = zeros'); 

 

%% Display in Re, Im 

figure(); hold on; grid on; view(30, 30); 

title('b) Complex sines scalar product on L: 

Abs/Angle'); 

xlabel('Frequency difference, \omega^-

/\Delta\omega'); ylabel('Abs'); zlabel('Angle'); 

  

plot3(w/W, abs(e), angle(e));   % plot scalar 

product 

scatter3(wz/W, abs(z), angle(z)); % plot zeros 

plot(w/W, L*power(2*(1-cos(w*L))./power(w*L, 2), 

1/2), 'LineWidth', 2); % plot abs 

legend('<f, g>_L', 'm\Delta\omega = zeros', 'Abs 

|<f, g>_L| = max error'); 

csinc.m 
function y = csinc(x) 

    iz = find(x==0); 

    y = -j*(exp(j*x)-1)./x; 

    y(iz) = 1; 

end 

I. Matlab code 9. FFT restore algorithm 

%% Parameters 

L = 3;                          % time to detect 

w0 = 50*pi/L;                   % ortho system 

base frequency 

M = 4;                          % number of waves 

(information numbers) 

Z = rand(1, M)+j*rand(1, M);    % information 

numbers 

env_scale = 128;                % DFT envelope 

scale factor 

  

%% Preprocessing 

csine = @(t, w, ph) exp(j*(w*t+ph)); % wave signal 

  

w_step = 2*pi/L;                    % system 

frequency step 

ws = w0 + w_step*(0:size(Z, 2)-1);  % system 

frequencies vector 

ps_sender = 1*2*pi*rand(1, M);      % system 

phases (random) vector for sender 

ps_receiver = ps_sender;            % system 

phases (random) vector for receiver 

  

N = M;                              % number of 
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samples: N>=M 

dt = L/N;                           % sampling 

time step 

t = dt*(0:N-1);                     % sampling 

timeline 

tick = dt/256;                      % continuous 

time step (for plot) 

time = tick*(0:L/tick-1);           % continuous 

timeline 

  

%% Ortho signal forming 

s = 0*time; 

samples = 0*t; 

for n = 1:M 

    s = s + Z(n)*csine(time, ws(n), ps_sender(n)); 

    samples = samples + Z(n)*csine(t, ws(n), 

ps_sender(n)); 

end 

  

%% FFT restore 

Z_fft = 1/N*fft(samples.*exp(-j*(t*w0)));           

% rotate with t = {n*dt}, n=0..N-1; 

Z_fft(1:M) = Z_fft(1:M).*exp(-j*ps_sender);         

% rotate phases back 

Z_env = dft_scale(Z_fft, env_scale);% DFT envelope 

  

%% Display signal and samples 

figure(); hold on; grid on; 

title('a) Signal'); xlabel('t'); ylabel('Re'); 

zlabel('Im'); 

  

plot3(time, real(s), imag(s), 'k');                         

% display continuous 

scatter3(t, real(samples), imag(samples), 'k', 

'filled');   % display signal samples 

  

%% Display numbers & FFT results 

figure(); hold on; grid on; view(45, 45); 

title('d) Scalar product results(FFT and 

matrix)'); 

xlabel('m'); ylabel('Re S_m'); zlabel('Im S_m'); 

  

scatter3(0:N-1, real(Z), imag(Z), 'k', 'filled', 

'DisplayName', 'FFT results'); 

scatter3(0:N-1, real(Z_fft), imag(Z_fft), 'r', 

'DisplayName', 'FFT results'); 

plot3((0:env_scale*N-1)/env_scale, real(Z_env), 

imag(Z_env), '-', 'DisplayName', 'DFT envelope'); 

legend('Location', 'best'); 
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