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Some more on ω-finite automata
and ω-regular languages.

Part I: The main definitions and properties

B. F. Melnikov, A. A. Melnikova

Abstract—The finite and infinite iterations of finite and
infinite languages arise in various problems of the formal
languages theory. For instance, we can mention their application
for the description of subclasses of the context-free languages
class with the decidable equivalence problem. For infinite
iterations of finite languages, we consider in this paper so-called
strongly connected omega-automata and corresponding omega-
regular languages. For them, many statements are fulfilled
that are not satisfied in the more general case, i.e. when we
use arbitrary omega-finite automata and corresponding omega-
regular languages; the omega-iterations of languages include in
the class of strongly connected omega-regular languages. The
main of such properties and statements are non-existence of an
omega-automaton for which there is no equivalent determinis-
tic, and the possibility of checking the equivalence of two given
omega-automata; in the general case (i.e., when we consider
arbitrary omega-automata), both of these properties are not
satisfied. We also describe transferring the usual procedure of
determinization to the case of omega-automata and show the
correctness of this procedure in the cases we are considering.
We consider some examples, and in the second part of the
paper, we shall consider the transfer of a well-known example
(so called Waterloo automaton) to the case of omega-automata
and omega-languages.

Keywords—nondeterministic finite automata, regular langu-
ages, omega-computations, omega-automata, omega-regular
languages.

I. INTRODUCTION

The main subject of this paper is the connection between
the known facts related to ω-regular languages1 and iterations
of languages (usually, infinite iterations of finite languages).
However, we also consider some other statements related to
ω-languages, but not related to iterations of languages.

The iterations of finite and infinite languages arise in
various problems of the formal languages theory. We cite
only three relevant topics related to previous publications of
the authors of this paper.
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1“ω-regular languages” is an established spelling; the authors do not know
how it complies with the rules of classical English. Similarly for “ω-finite
automata”. Certainly, we shall use this spelling.

However, the same spelling was also established in Russian mathematical
literature, which carries some inaccuracy: “ω” is related to the combination
of words “regular languages” (or “finite automata”), not to the word
“regular” (or “finite”), and therefore should be written with a dash (and
not with a hyphen).

• The description of subclasses of the context-free lan-
guages class with the decidable equivalence problem.
See [1] etc.

• The use of iterations of languages for describing the
structure of the set of loops of the transition graph of
a considered nondeterministic finite automaton and the
equivalent basis automaton. See [2], [3], [4] etc.

• The connection between iterations of languages and
some problems of the theory of approximation of semi-
groups. See [5], [6] etc.

Some clarification of the mentioned problems, as well as
other links to our previous works are given below in prelim-
inaries.

Thus, in connection with all of the above, we consider
some facts related to ω-finite automata2 and ω-regular lan-
guages. We specifically note, that the terminology and basic
concepts used by our paper are somewhat different from
those used in [7].

We can say that the main objects considered in this paper
are so-called strongly connected ω-automata and correspond-
ing ω-regular languages. For them, many statements are ful-
filled that are not satisfied in the more general case, i.e. when
we consider arbitrary ω-finite automata and corresponding ω-
regular languages. It is important to note that the ω-iterations
of languages (they are of particular interest to us) do include
in this class. The main of these properties and statements
are non-existence of an ω-automaton for which there is no
equivalent deterministic, and the possibility of checking the
equivalence of two given ω-automata. We note again that
in the general case (i.e., when we consider arbitrary ω-
automata), both of these properties are not satisfied.

The structure of the paper is as follows. Sections II, III,
and IV includes preliminaries:
• in Section II, we give notation related to the “usual”

finite automata and regular languages3;
• in Section III, we consider notation related to arbitrary
ω-languages; we also consider there some facts on ω-
languages which is necessary for the remained part of
the paper;

• and in Section IV, we consider ω-automata: among
various versions of ω-automata, we shall consider so-
called Büchi-automata only; moreover, we shall mainly
use a special simplification of Büchi-automata, which
is sufficient for the purposes of this paper.

2Below, we usually shall write simply “ω-automata” in the meaning “ω-
finite automata”.

3Below, we almost always shall not use quotes in such context.
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In Section V, we consider a special subclass of the ω-
automata class. We called such objects iterating ω-automata,
and firstly introduce the definition and some examples for
them. Corresponding ω-languages are called iterating ω-
languages. And in Section VII, we introduce special sub-
classes of the classes of iterating ω-automata and ω-lan-
guages: i.e. the classes of strongly connected ω-automata and
ω-languages.

Before, in Section VI, we describe in details the trans-
ferring of the usual procedure of determinization (for usual
finite automata) to the case of ω-automata; we have to
describe it, because we shall use the description in proving
some further facts. For instance, in Section VII we prove a
fact (Theorem 1), which shows the validity of this procedure
for the class of ω-finite automata.

We are going to continue the consideration of ω-finite
automata and corresponding ω-regular languages in Part II
of this paper. At the end of this part, we present the main
results that we are going to publish in Part II.

II. PRELIMINARIES: THE MAIN NOTATION

For the usual finite automata and regular languages, we
shall use notation of our previous papers. At first, see [8],
[9]. Almost always, we considered nondeterministic finite
automaton designated

K = (Q,Σ, δ, S, F ). (1)

We specially note the following notation: the edge

δ(q, a) 3 q′

(for finite automaton K) will be denoted

q
a−→
K

q′, or q
a−→
δ
q′, or simply q

a−→ q′.

We also remark that we shall use designation Lin, which
naturally generalizes to ω-automata defined below. For in-
stance, for automaton 1 and its state q ∈ Q, Lin(q) is simply
the language of the automaton

(Q,Σ, δ, S, {q} ).

III. PRELIMINARIES: ω-LANGUAGES

Among the monographs devoted to ω-languages, we note
[7] and the classical books [10], [11], [12]. A detailed theory
of ω-languages is also presented in the classical papers [13],
[14], [15], [16]. Note once again, that the terminology and
basic concepts used by our paper are somewhat different
from those used in [7].

Words over a given alphabet are finite sequences of the
letters, and an infinite a sequence of letters of a given
alphabet is called an infinite word or ω-word over this
alphabet. The set (finite or infinite) of ω-words is called an
ω-language.

The set of all ω-words over the alphabet Σ is denoted by
Σω . We shall denote

Σ∞ = Σ∗ ∪ Σω.

Below, the subsets of the set Σ∞ will be usually denoted by
A and B.

(Usually, the alphabet Σ is supposed to be finite. However,
in some our papers it should be infinite, see at first [17]. See
also [1], [18] etc. for some possible applications.)

For some given language L ⊆ Σ∗ (“usual” language), we
shall define ω-languages

lim(L) and adh(L).

Let us note in advance, that we can consider these ω-
languages as a connection between languages (subsets of the
set Σ∗) and ω-languages (subsets of the set Σω).

Thus, let pref(u) (where u ∈ Σ∗) be the set of all the
prefixes of u; similarly pref(α) (where α ∈ Σ∞) be the
(infinite) set of all the prefixes of α. For the languages (ω-
languages), we define

pref(A) =
⋃
α∈A

pref(α).

Then for the given language L ⊆ Σ∗, we set

lim(L) =
{
α ∈ Σω |

(∀k ∈ N) (∃u ∈ L)
(
|u| > k, u ∈ pref(α)

) }
and

adh(L) =
{
α ∈ Σω |

(∀w ∈ pref(α)) (∃x ∈ Σ∗) (wx ∈ L)
}

It is east to prove, that

lim(L) ⊆ adh(L) ,

but, generally speaking,

lim(L) 6= adh(L) :

the simplest example for the last inequality is the language
L, which can be defined by the regular expression a∗b; for
it, we have

lim(L) = ∅ , but adh(L) = {aω} .

We also note the equality

adh(L) = lim (pref(L)) ,

which was proved in [12]; in the present paper; however, it
does not play an important role for the further consideration.

We also note that for the infinite iterations of languages
considered in some our works, the ω-languages lim and adh
are one and the same.4 This result can be considered as a
consequence of the fact proved in [19, Th. 3.9].

Various methods are used to specify specific ω-languages.
Chronologically, the first to be applied the so-called L-
systems, including their special cases: OL-systems, DTOL-
systems, DOL-systems, etc. Apparently, these terms were
introduced since 1968 only, see [20], [21], [22]. However, for
example, the widely used in various areas of mathematics
Thue – Morse ω-word was actually described using DOL-
systems much earlier, see [23], [24].

L-systems are described in detail in [12], some special
cases of L-systems are defined in [25, Chap. 1, 5]. Often, the
infinite iterations of languages that we consider cannot be
generally defined using DOL systems, and OL-systems are
apparently not a very convenient object to use, so we shall
only define DTOL systems that we shall use in the future.
The definition is given according to [16].

4In the continuation of this paper, we are going to consider infinite
iterations of finite languages in much more detail.
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A DTOL-system is a construction of the type

G = (Σ, h1, . . . , hn, w) , (2)

where:
• Σ is the considered alphabet5;
• n ≥ 1;
• each hi is a morphism of the type

hi : Σ∗ → Σ∗;

• w ∈ Σ∗ is an “axiom” 6.
By definition, the language of such DTOL-system (2) (i.e.

DTOL-language L(G)) is the set of words{
u ∈ Σ∗

∣∣ (∃i1, . . . , ik ∈ 1, n) (u = hik◦· · ·◦hi2◦hi1(w))
}
.

Let us remark, that for n = 1, this definition defines a
DOL-system; see [25, Chap. 1]. The ω-DTOL-language is
by definition lim

(
L(G)

)
.

In addition to various L-systems, ω-languages can be
determined using various versions of ω-automata and ω-
grammars. These methods for defining ω-languages have
analogies with defining context-free languages by push-down
automata and context-free grammars.

IV. PRELIMINARIES: ω-AUTOMATA

Among various versions of ω-automata, we shall consider
so-called Büchi-automata only. (See [7] etc. For the primary
source, see [26].) In fact, a Büchi-automaton can be defined
in full accordance with the usual finite automaton: a tuple

K = (Q,Σ, δ, S, F ). (3)

Formally, this coincides with (1); however, we have to make
the following additions.
• Certainly, the set of final states F has a different

meaning.
• In our previous papers, we considered the transition

function δ without ε-edges, i.e. it is a function of the
type

δ : Q× Σ→ P(Q) . (4)

We make similar assumptions in this paper.
• In our previous papers, we sometimes considered ω-

automaton as a tetrad

K = (Q,Σ, δ, S ), (5)

but not as the five like (3); see [27], [28] and sections
later in this paper.7

• In addition, we have to define the ω-language accepted
by the automata (3) and (5), considered as ω-automata.

However, we shall not consider a detailed definition, but
consider its simplification. Thus, given the last things, we
shall use the following modified definitions.8

Definition 1: An ω-automaton is

K = (Q,Σ, δ, S, F ), (6)

5Above, we briefly discussed the possibility of considering the infinite
alphabet.

6Here, its use here is similar to that used in mathematical logic, the theory
of formal grammars, etc.

7Unlike usual finite automata, we shall usually denote ω-automata by K
etc. (not by K).

8They could be considered as a special case of Büchi-automata.

where9:
• Q is the set of states;
• Σ is the alphabet;
• δ is the function of the type (4);
• S ⊆ Q is the set of initial states;
• F ⊆ Q is the set of special states, which could be called

as final ones.

Such automata are represented in the form of graphs in
the usual way. Like our previous papers, we denote below
all the states of usual automata (NFA) by double circles. (The
single circles are used for so-called “proper” GNFPAs only,
see [29] for details.) The initial and final states are marked
by little input and output arrows respectively.

We specifically simplified two the following definitions a
little: for our purposes, such a simplification is sufficient.

Definition 2: The ω-word

a1a2 . . . , where ai ∈ Σ for each i ∈ N (7)

is an ω-sequence of ω-automaton (6), if there exists an
infinite sequence of states

q0 , q1 , q2 , . . . , where qi ∈ Q for each i ∈ N0 , (8)

for which the following conditions hold:
• q0 ∈ S;
• (∀i ∈ N) (δ(qi−1, ai) 3 qi).

Definition 3: The ω-word

a1a2 . . . , where ai ∈ Σ for each i ∈ N
is accepted by ω-automaton (6), if it is the ω-sequence of
this ω-automaton, and in addition, the following conditions
hold:
• there exists f ∈ F , such that the sequence (8) contains
f infinitely many times.10

The ω-language accepting by ω-automaton (6) (or simply
“ω-language of ω-automaton”) is the set of ω-words accept-
ing by it.

Of course, for such definitions we are interested in the
usual problems of language theory. First, how to determine
the equivalence of two ω-automata (that is, do the given
ω-automata define the same ω-language)? Secondly, does
there exist a deterministic ω-automaton equivalent to a given
one? 11 Therefore, we must first determine the deterministic
ω-automaton, which is done in the usual way.12

Definition 4: The ω-automaton of Definition 1 is deter-
ministic, if the following conditions hold13:
• |S| ≤ 1;
• (∀q ∈ Q , a ∈ Σ) (|δ(q, a)| ≤ 1).

9As usual.
10We repeat that we deliberately simplified this definition a little. There

are many options for accepting an ω-word by an ω-automaton. The details
are given in the cited works related to ω-automata. Among them, we
especially note the papers of R. Cohen and Y. Gold, that analyze the
relationship between some variants of accepting.

11In another way, this question can be reformulated as follows. Does
there exist a corresponding deterministic ω-automaton for any ω-language
that can be defined by an ω-automaton?

12This definition is also slightly simplified compared to those given in
classical publications.

13As usual, we consider S and each value of the function δ as the sets.
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A well-known example answers the second question neg-
atively. Namely, let us consider the following automaton
(Fig. 1):

?

��
��
��
��

1 -b����
�a, b ��

��
��
��

2 ����
Ib

?

Fig. 1

It is evident, that the ω-language of this ω-automaton could
be determined by the expression14

(a+ b)∗ · bω. (9)

The usual procedure of making the deterministic automa-
ton15 gives the following ω-automaton (Fig. 2):

?

��
��
��
��

A����
�a ��

��
��
��

B ����
Ib

-
b

� a

?

Fig. 2

(where A corresponds to the set {1}, and B corresponds
to the set {1, 2}). Certainly, it is not equivalent to the ω-
automaton of Fig. 1: for instance, the ω-language of the last
ω-automaton contains ω-word

(ab)ω,

which is not included in the ω-language of the first ω-
automaton.16

Thus, we answered negatively to the second of the ques-
tions asked above; that is, not for any ω-automaton there
exists an equivalent deterministic one. Further we shall
consider particular cases in which a different situation is
observed.

All this allows us to consider the following definition, or
rather, makes it meaningful.

Definition 5: The class of deterministic ω-languages
includes only those ω-languages, each of which can be
accepted by an deterministic ω-automaton.

In the conclusion of the section, we note once again that
the designation Lin that we shall use in the future is not
necessary to redefine for ω-automata.

V. ITERATING ω-AUTOMATA: THE DEFINITION

In this section, we shall consider a special subclass of the
ω-automata class.

As we have already noted, in many of our previous works,
we considered problems related to iteration of languages,
as well as to binary relations related to such iterations of
(usually finite) languages. See the papers [1], [5], [6], [17],
[18], [19] cited before, and also [31], [32] etc.

14We shall not define ω-regular expressions strictly, we only note that
there are several similar approaches to this thing; for instance, see below.
Anyway, this expression is certainly clear.

15We simply transfer the same procedure to the case of ω-automata. More
details are below.

16We also note that (ab)ω can be considered both as an ω-word and as
an “regular ω-expression”.

A generalization of such iterations to case of ω-languages
are ω-iterations. Above, we defined them using L-systems;
now, we shall consider a simpler definition of them. For the
following, the iterating set does not contain the empty word
(i.e. A 6 3 ε when we use notation Aω); this limitation is
because otherwise, the following definition accepts not only
ω-words, but also usual words. Like alphabet Σ, the set A
is usually finite; however, as we noted before, in [17] we
considered cases, when either Σ or A should be infinite; we
also already cited [1], [18] for some possible applications.

Definition 6: An iterating ω-language (of the language
A) is

Aω =
∏
i∈N

ui, where ui ∈ A for each i ∈ N.

(Here, we used the natural generalization of the concatena-
tion operation, when its right operand is an ω-word.)

We also note that according to, for example, already cited
papers [13], [14], [22], we can assume that the infinite
iterations of languages discussed below are special subsets
of the so-called ω-deterministic context-free languages class
(this is a more general object than the ω-languages of
the deterministic ω-finite automata). However, in our case
(i.e. for iterating ω-languages) we can consider exactly the
(nondeterministic) ω-finite automaton defined by the next
Definition 7. We note in advance that we strictly define an
object schematically depicted on the following Fig. 3.

Fig. 3

For Definition 7, we shall use notation

1, n = { 1, 2, . . . , n }

and set
A = {u1, u2, . . . , un } .

Let us especially note, that the use of ui differs from that
used in the previous Definition 6.

Definition 7: Let

ui = ai,1ai,2 . . . ai,li ,

where ai,j ∈ Σ, li ∈ N for i ∈ 1, n. 17

Then an iterating ω-automaton (of the language A) is(
Q , Σ , δ , {q0} , {q0}

)
,

where
Q = {q0} ∪

⋃
i∈1,n,

j∈1,li−1

qi,j ,

17Let us note once again, that we do not consider empty words here, i.e.
each li > 0.
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and the transition function δ is defined in the following way.
• For each i ∈ 1, n:

– δ(q0, ai,1) = {qi,1};
– for each j ∈ 1, li − 2, δ(qi,j , ai,j+1) = {qi,j+1};
– δ(qi,li−1, ai,li) = {q0}.

• For all remaining pairs q ∈ Q and a ∈ Σ, we set

δ(q, a) = ∅ .

In any infinite path of the transition graph of the ω-
automaton of Definition 7, the state q0 occurs infinite number
of times. Therefore Definitions 6 and 7 do define the same
ω-language.

VI. THE FORMAL DEFINITION OF DETERMINIZATION
PROCEDURE IN CASE OF ω-AUTOMATA

In this section, we consider the usual procedure of deter-
minization; more precisely, we consider its transferring to
the case of ω-automata. This procedure is valid standard;
however, it must be considered in detail for the following
three reasons:
• firstly, for usual automata, the different formulations

of the corresponding algorithm are given in different
monographs (and especially the specific description of
such algorithms);

• secondly, we have to describe it, because we shall use
the description in proving some facts;

• thirdly, we have to describe it, because not quite stan-
dard is working with the set F : in the usual case, they
are used to describe the sets of useless and not-useless
states, and in our case, as can be seen from the above
examples, it is hardly possible to draw a corresponding
analogy.18

We note once again that, according to the material of Sec-
tion IV, that we do not guarantee equivalence of the both
ω-automata: the given one and the one obtained after the
transformation.19

Below, P(A) denotes the superset for the given set A.20

Similar (but not the same) notation will be used for the
automata. Thus.

Definition 8: Let the ω-automaton K (6) be given. ω-
automaton P(K) is defined in the following way.

P(K) = (Q,Σ, δQ, {S},F ) ,

where:
• Q = P(Q);
• δQ is defined as follows: the edge

q
a−→
δQ

q′, where q, q′ ∈ P(Q), a ∈ Σ

exists if and only if(
∃q ∈ q, ∃q′ ∈ q′

) (
q

a−→
δ
q′
)
;

• F =
{
f ∈ P(Q)

∣∣ (∃f ∈ F ) (f ∈ f)
}

.

18However we shall use the standard (for the usual case) algorithms.
19We also note in advance, that in the particular cases of interest to us,

such equivalence does hold.
20Other papers sometimes use the equivalent notation 2A.

The following fact is very easily proved21: if K and
P(K) are considered as the usual automata, then they are
equivalent. However we note once again, that, generally
speaking, ω-automata K and P(K) are not equivalent.

Authors hope that the examples of Section IV should not
cause any questions; moreover, they can be considered as the
examples to the definition given in this section.

VII. STRONGLY CONNECTED ω-AUTOMATA:
THE DEFINITION AND THE MAIN PROPERTY

Let us note at first, that the notation of the graph theory
is consistent with the classical book [30].

The following definition is very natural. It introduces
special subclasses of the classes of ω-automata and ω-
languages considered in the previous section.

Definition 9: An ω-automaton is called strongly con-
nected one, if its transition graph is strongly connected.

Certainly, automaton on Fig. 1 is not strongly connected.
Obviously, the definitions for both pairs of classes we in-

troduced (i.e. iterating / strongly connected ω-languages /ω-
automata) can be reformulated for “usual” regular languages
and nondeterministic finite automata. In this case, the defini-
tions for the corresponding “usual” languages are naturally
introduced. Moreover, it can be proved that such definitions
are meaningful, i.e. they introduce the own subclasses of the
regular languages class.22 We are going to return to this issue
in a future publication.

The following theorem seems to be simple, but the authors
did not find it in the available literature.

Theorem 1: Let the strongly connected ω-automaton K (6)
be given. Then the ω-automata K and P(K) are equivalent.

Proof. We have to prove the following 4 parts:
1) each ω-sequence of ω-automaton K belongs to the set

of ω-sequences of ω-automaton P(K); below, this part
will be denoted by “K ⇒ P(K) (seq)”;

2) each ω-sequence of ω-automaton P(K) belongs to the
set of ω-sequences of ω-automaton K; below, this part
will be denoted by “K ⇐ P(K) (seq)”;

3) the presence an infinite number of occurrences of at
least one state included in the set F in the sequence of
states23 of K induces the presence an infinite number
of occurrences of at least one state included in the set
F in the sequence of states24 of P(K); below, this part
will be denoted by “K ⇒ P(K) (fin)”;

4) the converse to the previous fact; below, this part will
be denoted by “K ⇐ P(K) (fin)”.

seq fin
K ⇒ P(K) (1) (3)
P(K)⇒ K (2) (4)

Thus, let us prove these facts.

21Similar statements are included in standard student courses in discrete
mathematics, theory of formal languages, etc.

22In contrast, for example, to the property of unambiguousity: we can
consider unambiguous finite automata, but it makes no sense to define “the
class of unambiguous regular languages”.

23We consider the accepting an ω-word by the given ω-automaton. I.e.,
we consider Definition 2 for the given ω-word and the ω-automaton K.

24Here, we consider Definition 2 for the given ω-word and the ω-
automaton P(K).
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1) K ⇒ P(K) (seq).
For this thing, there is enough prove by induction, that for

the given ω-word (7) and for each n ∈ N0, the following
holds:

(∃q ∈ Q)
(
LinP(K) (q) 3 a1a2 . . . an

)
. (10)

Besides, we can assume the existence of the set of states (8)
of the automaton K.

For the base of induction, we choose q0 = {S}. Let us
prove the step.

We assume (10). By Definition 2, we have

qn
an+1

−−−→
δ

qn+1 . (11)

By Definition 8, we select q′ : namely, we select it using the
edge (11). Then we obtain (10) for n + 1 instead of n and
q′ instead of q, and we can say, that we built the necessary
sequence of states for the automaton P(K), Q.E.D.

2) K ⇐ P(K) (seq).
Let us reformulate a part of Definition 8 for ω-automaton

P(K). We have, that for the given ω-word (7), there exists
an infinite sequence of states

q0 , q1 , q2 , . . . , where qi ∈ Q for each i ∈ N0 , (12)

for which the following conditions hold:
• q0 = {S};
• (∀i ∈ N) (δ(qi−1, ai) = {qi)}

(we also changed both “∈” and “3” for the equality because
of the determinism).

Then there is enough prove by induction, that:
• for the given ω-word (7);
• for the corresponding sequence of states

q0 , q1 , q2 , . . . (qi ∈ Q for each i ∈ N0), (13)

(we obtained it changing the sequence (8); we can see,
that it coincides with the sequence (12) used when
proving the direct inclusion);

• and for each n ∈ N0,
the following condition holds:

(∃q ∈ Q)
(
LinK (q) 3 a1a2 . . . an

)
. (14)

By Definition 2 for automaton P(K), we have its edge

δ(qi, ai+1) = {qi+1}

for the letter ai+1 of the given ω-word (7).
By Definition 8 for automaton P(K), we obtain existing

an edge of the type (11), where

qn ∈ qn

(it is a consequence of the induction hypothesis), and also

qn+1 ∈ qn+1 .

The last fact proves the induction step, Q.E.D.

3) K ⇒ P(K) (fin).
Let us consider some ω-word of ω-automaton K. By

Definition 3, the corresponding sequence of states (8) has the
following property: for some f ∈ F , this sequence includes
a subsequence (let it be the sequence σ), which includes f
infinitely many times. For each such inclusion, we have a
corresponding state of the sequence (13); and because this

state (considered as a set of states of Q) includes f , it belongs
to F . Thus, each state of σ corresponds to a state of F ; then,
because σ is infinite, there exists a state of F which enters
σ an infinite number of times. Then, by Definition 8, the
considered ω-word belongs to ω-language of the automaton
K. Q.E.D.

4) K ⇐ P(K) (fin).
Let us consider some ω-word of ω-automaton K. By

Definitions 3 and 8, the corresponding infinite sequence of
states (13) contains infinitely many states f ∈ P(Q), such that
f 3 f for some f ∈ F . If for each f ∈ F , the corresponding
sequence of the states of K contains the finite number of f
only, then for none f ∈ F , we could not form the infinite
number of f in the sequence (13), and this contradicts the
possibility of accepting the considered ω-word by the given
ω-automaton K. Q.E.D.

To conclude this section, let us give the following natural
definition.

Definition 10: The ω-language is called strongly con-
nected if it can be accepted by an strongly connected ω-
automaton.

As we saw from the previous exposition, this definition
is meaningful, i.e. the subclass of strongly connected ω-
languages is the own subclass of the ω-languages class.
However, we have not yet answered the question whether
this subclass includes any deterministic ω-regular language.

ON PART II OF THIS PAPER

In Part II of this paper, we shall continue the consider-
ation of the subclasses of ω-regular languages and ω-finite
automata classes we have defined in Part I. For instance,
we shall consider an effective algorithm for determining
the fact that some ω-language is the iterating one. We also
shall consider the transfer of a well-known example (so
called Waterloo automaton) to the case of ω-automata and
ω-languages.
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