
Local Area Messaging for Smartphones

Dmitry Namiot
 Lomonosov Moscow State University

Faculty of Computational Mathematics and Cybernetics
Moscow, Russia

dnamiot@gmail.com

Abstract — This paper describes a new model for local

messaging. It is mobile mashup combines passive monitoring

for smart phones and cloud based messaging for mobile

operational systems. Passive monitoring can determine the

location of mobile subscribers (mobile phones, actually)

without the active participation of the users. Mobile users do

not need to mark own location on social networks (check-in).

They do not need to run on their phones the location track

applications too. Cloud Messaging lets data providers (e.g.,

local businesses) directly deliver their information to mobile

users nearby a selected point. This paper describes how to

combine the monitoring and notifications.

Keywords-Wi-Fi;monitoring;proximity;location;messaging

I. INTRODUCTION

In the first paper that introduced the term ‘context-aware’
(Schilit and Theimer [1]), authors describe context as
location, identities of nearby people and objects, and changes
to those objects. There are several definitions from other
authors, but most of them define context awareness as a
complementary element to location awareness. Location
serves as a determinant for the main processes and context
adds more flexibility with mobile computing and smart
communicators [2].

There are models of applications, where the concept of
location can be replaced by that of proximity. At the first
hand, this applies to use cases where the detection for exact
location is difficult, even impossible or not economically
viable [2]. Very often, this change is related to privacy. For
example, a privacy-aware proximity detection service
determines if two mobile users are close to each other
without requiring them to disclose their exact locations [3].
As per developed algorithms for privacy-aware proximity
detection methods we can mention papers [4] and [5], for
example. They allow two online users to determine if they
are close to each other without requiring them to disclose
their exact locations to a service provider or other friends.
Usually, the main goal for such systems is to generate
proximity messages when friends approach each other closer
than some predefined distance threshold. Technically, this
threshold can be defined individually for each user (for
group of users).

Of course, the term “distance” here depends on the
metric used for the measurements. The classical example
includes shortest path metric and two users on the different
sides (banks) of the river. It is anti-pattern. The distance

between users could be within the given threshold, but such
“proximity” is useless.

Metric measurements for privacy can be replaced with
some approximation by wireless proximity (network
proximity). For this paper network proximity definition is
very intuitive. It is a measure of how mobile nodes are close
or far away from the elements of network infrastructure. For
example, let us assume that we have one Wi-Fi access point
(AP). Network proximity is this case is a measure how our
mobile phones are close of far away from this AP.
Technically, it is based on the observation that measurements
of the wireless channels between a radio frequency source
and devices in proximity are highly correlated [6].

There are several systems that can use network proximity
as a base for mobile services. At the first hand we can
mention here our own system SpotEx (Spot Expert) [7].
According to this model, any existing or even especially
created Wi-Fi hot spot could be used as presence sensor that
can trigger access for some user-generated information
snippets.

The typical application in this area uses collected
database of so called Wi-Fi “fingerprints”, including MAC
addresses and the received signal strengths (RSSI) of nearby
access points. This database could be used for Wi-Fi based
positioning as well as for discovering the user's behavioral
patterns [8]. A classical approach to Wi-Fi fingerprinting [9]
involves RSSI (signal strength). The basic principles are
transparent. At a given point, a mobile application may hear
(“see”) different access points with certain signal strengths.
This set of access points and their associated signal strengths
represents a label (“fingerprint”) that is unique to that
position. The metric that could be used for comparing
various fingerprints is k-nearest-neighbors in signal space. It
means that two compared fingerprints should have the same
set of visible access points. As the next step they could be
compared by calculating the Euclidian distance for signal
strengths. At the same time, the need for the collection of
fingerprints is the biggest problem for this approach.

II. WI-FI DEVICES AND MONITORING

Problems associated with the collection of fingerprints,
are fairly obvious. It is the price of the calibration process,
the need for rework after the changes in the network and,
most importantly, lack of support for dynamic networks. For
example, most of the modern smart phones let users open
Wi-Fi access point right on the phone.

We cannot create stable base of fingerprints for dynamic
access points. Data linked to such dynamic access points
become linked to the phones. It is, in fact, a typical dynamic
location based system (LBS). The available services move
with the moved phone [2].

In our new service we’ve decided to use another
fingerprints-less model: sniffing for beacon frames.
Typically, during the calibration phase of Wi-Fi
fingerprinting, beacon frames are collected from nearby
access points at each survey position. As the next step, the
MAC address, RSSI (signal strength), and timestamp could
be are extracted from each beacon. In our system we use the
reverse schema. We would like to analyze beacons
transmitted by Wi-Fi devices, rather than beacons collected
by them.

Collecting traces of Wi-Fi beacons is the well-know
approach for getting the locations of Wi-Fi access points
(AP). Beacon frames are used to announce the presence of a
Wi-Fi network. As a result, an 802.11 client receives the
beacons sent from all nearby access points. Client receives
beacons even when it is not connected to any network. In
fact, even when a client is connected to a specific AP, it
periodically scans all the channels to receive beacons from
other nearby APs. It lets clients keep track of networks in its
vicinity. But in the same time Wi-Fi client periodically
broadcasts an 802.11 probe request frame. Client expects to
get back an appropriate probe request response from Wi-Fi
access point. As Wi-fi spec, a station (client) sends a probe
request frame when it needs to obtain information from
another station. For example, a radio network interface card
would send a probe request to determine which access points
are within range.

Figure 1. Probe request/response

A Probe Request frame contains two fields: the SSID and
the rates supported by the mobile station. Stations that
receive Probe Requests use the information to determine
whether the mobile station can join the network. To make a
happy union, the mobile station must support all the data
rates required by the network and must want to join the
network identified by the SSID. This may be set to the SSID
of a specific network or set to join any compatible network.
Drivers that allow cards to join any network use the
broadcast SSID in Probe Requests [10].

Technically, probe request frame contains the following
information:

- source address (MAC-address)

- SSID
- supported rates
- additional request information
- extended support rates
- vendor specific information

Our access point can analyze received probe request.

Obviously, that any new request (any new MAC-address)
corresponds to a new wireless customer nearby. Note, that
Bluetooth devices could be monitored by the same
principles.

Wi-Fi based device detection uses only a part from the
above mentioned probe request. It is a device-unique address
(MAC address). This unique information lets us re-identify
devices (mobile phones) across our monitors.

We should note also, that passive Wi-Fi detection is not
100% reliable. Mobile phones (mobile OS, actually) can
actually transmit probe requests at their discretion. Our own
experiments with commercially available Wi-Fi probe
scanners confirm data from [12]. Monitor detects in average
about 70% of passing smartphones.

There are commercial of-the-shelf components that can
provide passive Wi-Fi monitoring. For example, it is
Meshlium Xtreme [13]. With passive monitoring Wi-Fi
devices can be detected without the need of being connected
to a specific access point, enabling the detection of any
smartphone, laptop or hands-free device which comes into
the coverage area.

Here is an example of information saved by Wi-Fi
scanner:

DB ID: 53483
Timestamp: 2012-04-24 07:56:25
MAC: C4:2C:03:96:0E:4A
AP: Cafe
RSSI : 69
Vendor: Apple

Note, that key moment here is MAC-address for mobile

device. We will use it for re-identification only. It means, by
the way, that for keeping the privacy we do not need to save
in our database an original address. It is enough just to keep
some hash-code for this address.

The typical tasks this approach could be applied for are:

- get a number of people passing daily in a street
- detect an average time of the stance of the people in a
street or in a building
- differentiate between residents (daily matches) and
visitants (sporadic matches)
- detect the walking routes of people in shopping malls
and average time in each area

In general, it could be described as a real analytics for the
real places. It is what makes Google Analytics for web sites,
but applied for the real places and real visitors.

In this paper we propose a new model (use case) for
passive monitoring. It is messaging for the real places and
real visitors.

III. CLOUD MESSAGING

Google Cloud Messaging for Android (GCM) is a service
that allows you to send data from your server to your users'
Android-powered device. This could be a lightweight
message telling your app there is new data to be fetched from
the server (for instance, a movie uploaded by a friend), or it
could be a message containing up to 4kb of payload data (so
apps like instant messaging can consume the message
directly).

The GCM service handles all aspects of queuing of
messages and delivery to the target Android application
running on the target device. GCM is completely free no
matter how big your messaging needs are, and there are no
quotas [14].

Apple Push Notification Service (APN) is a robust and
highly efficient service for propagating information to
devices such as iPhone, iPad, and iPod touch devices. Each
device establishes an accredited and encrypted IP connection
with the service and receives notifications over this persistent
connection. If a notification for an application arrives when
that application is not running, the device alerts the user that
the application has data waiting for it [15].

Architectures of these push notification services have
common features. At the first hand, application servers send
a notification message with an intended receiver (or the
target mobile device) to one of the cloud-based messaging
servers. Messaging servers pushes the message to the target
mobile device. The push notification service eliminates the
needs of application servers to keep track of the state of a
mobile device (i.e., online or offline). Furthermore, mobile
devices do not need to periodically probe (poll) the
application servers for messages. It reduces the workloads of
the application servers and seriously simplifies the mobile
application development.

We describe below Google Cloud Messaging Service as
a main system used in our development. In the same time
principles are the same for all the above-mentioned services.

Here are the primary characteristics of GCM as per
Google’s manual:

It allows 3rd-party application servers to send messages
to their Android applications.

An Android application on an Android device doesn't
need to be running to receive messages. The system will
wake up the Android application via Intent broadcast when
the message arrives, as long as the application is set up with
the proper broadcast receiver and permissions.

The first time the Android application needs to use the
messaging service, it fires off a registration Intent to a GCM
server. This registration Intent) includes the sender ID, and
the Android application ID.

If the registration is successful, the GCM server
broadcasts an intent which gives the Android application a
registration ID.

The Android application should store this ID for later
use. To complete the registration, the Android application

sends the registration ID to the application server. The
application server typically stores the registration ID in a
database.

The registration ID lasts until the Android application
explicitly un-registers itself, or until Google refreshes the
registration ID for your Android application.

For an application server to send a message to an
Android application, the following things must be in place:

- The Android application has a registration ID that
allows it to receive messages for a particular device.

- The 3rd-party application server has stored the
registration ID.

- An API key. This is something that the developer must
have already set up on the application server for the Android
application. Now it will get used to send messages to the
device.

Here is the sequence of events that occurs when the
application server sends a message:

- The application server sends a message to GCM
servers.

- Google en-queues and stores the message in case the
device is offline.

- When the device is online, Google sends the message to
the device.

On the device, the system broadcasts the message to the

specified Android application via Intent broadcast with
proper permissions, so that only the targeted Android
application gets the message. This wakes the Android
application up. The Android application does not need to be
running beforehand to receive the message.

Your Android application cans un-register GCM if it no
longer wants to receive messages [14].

IV. SPOTIQUE SERVICE

Based on the above-mentioned description, we can note
that receiving the messages requires the registration phase.
Android application (read – mobile phone with installed
application) should inform GCM about the possibility to
obtain messages. Usually, this contract is presented in the
form of some ID (registration ID). IDs are stored in database.
So, our service can select all the stored IDs and distribute
some custom message (messages) to applications.

What if we include into process of registration MAC-
address too? This decision lets us simply compare
subscription info with the locally detected (presented) mobile
subscribers.

The whole schema is actually very transparent.

1) Mobile user informs CGM about his intention to

receive messages.
2) Messages are divided by topics. Each topic actually

corresponds to some location with passive Wi-Fi monitoring.
3) Our sender saves registration ID, topic and MAC-

address in central database.
4) Wi-Fi monitoring detects the presence for mobile

phones.

5) Our daemon scans detection log, extracts MAC-
addresses and compares them with subscription database

6) As soon as we discover that subscriber is detected
(he is somewhere nearby) we can use CGM for delivering
some custom messages

Note, that MAC-address in this schema is used for the re-

identification only. So, for keeping the privacy, we can
replace it with some hash-code (for both processes:
monitoring and subscription).

The typical use cases are proximity marketing and news

delivery in Smart City projects for example.

The push notification services of other platforms are

similar to GCM in the architectural design. When an
application launches in a mobile device, it needs to register
to the push service to get a unique ID. This ID may have
different names in different platforms, e.g., device token in
iOS and push URI in Windows, and then sends it to the
application server. When the application server wants to send
a push notification to an application, it sends the ID together
with the payload to a push server. Push server forwards the
payload to the application [16].

What are the advantages for this approach? At the first
hand, it is so-called passive monitoring. We do not need to
develop some special applications for mobile subscribers.
We do not need to ask for any special actions from mobile
subscribers, like running some application, checking-in in
social networks etc. The messaging will target only
subscribers physically presented in the covered area. The
process for subscription and un-subscription is very
straightforward. The “check-in” process (passive
discovering) is secure. It does not keep records in social
networks like ordinary check-ins in Foursquare, Facebook,
etc. It does not require user’s identification too.

What are the disadvantages? At the first hand, the passive
monitoring (as we wrote above) is not 100% reliable. Push
messaging delivery requires internet connectivity. But in the
same time, installing active Wi-Fi access point on-site,
mobile users can connect to, will improve the discovery
process.

The future development will introduce customized
messaging servers for passive Wi-Fi monitoring.

V. CONCLUSION

This article presents a new mashup based on passive Wi-
Fi monitoring for mobile devices and cloud based
notifications. Passive monitoring uses probe requests from
Wi-Fi specifications for detecting nearby clients.
Notification module uses cloud messaging (push
notifications) from mobile operational systems. This
approach does not require from mobile subscribers use
special applications for setting own location or publish
location info in the social network. Practical use cases for
this application are proximity marketing and Smart City
projects. The proposed approach automatically guaranties
that custom messages will target online subscribers in the
nearby area only.

REFERENCES

[1] G. Schilit and B. Theimer Disseminating Active Map
Information to Mobile Hosts. IEEE Network, 8(5) (1994) pp.
22-32

[2] D. Namiot and M. Sneps-Sneppe “Context-aware data
discovery” Intelligence in Next Generation Networks (ICIN),
2012 16th International Conference on, 2012 pp. 134 – 141,
DOI: 10.1109/ICIN.2012.6376016

[3] L.Šikšnys, J. Thomsen, S. Šaltenis, and M. Yiu Private and
Flexible Proximity Detection in Mobile Social Networks,
Mobile Data Management (MDM), 2010 Eleventh
International Conference on, 2010, pp. 75 - 84

[4] S. Mascetti, C. Bettini, D. Freni, X. S. Wang, and S. Jajodia,
“Privacy-aware proximity based services,” in MDM, 2009,
pp. 31–40.

[5] P. Ruppel, G. Treu, A. Küpper, and C. Linnhoff-Popien
“Anonymous User Tracking for Location-Based Community
Services,” in LoCA, 2006, pp. 116–133.

[6] S.Mathur, R.Miller, A.Varshavsky, W. Trappe, and
N.Mandayam “ProxiMate: Proximity-based Secure Pairing
using Ambient Wireless Signals”, MobiSys '11 Proceedings
of the 9th international conference on Mobile systems,
applications, and services, 2011, pp. 211-224, DOI:
10.1145/1999995.2000016

[7] D. Namiot and M. Schneps-Schneppe “About location-aware
mobile messages” International Conference and Exhibition
on. Next Generation Mobile Applications, Services and
Technologies (NGMAST), 2011 14-16 Sept. 2011 pp. 48-53
DOI: 10.1109/NGMAST.2011.19

[8] J. Rekimoto, T. Miyaki, and T. Ishizawa. LifeTag: WiFi-
based Continuous Location Logging for Life Pattern Analysis.
in LOCA. 2007

[9] Y. Chen, Y. Chawathe, A. LaMarca, and J. Krumm. Accuracy
characterization for metropolitan-scale Wi-Fi localization. In
ACM MobiSys, 2005.

[10] M.Gast 802.11 Wireless Networks: The Definitive Guide
O'Reilly Media, Inc., 2005, 654 p.

[11] Wi-Fi probe request http://wiresharklab.blogspot.ru/
Retrieved: Jan, 2013

[12] A. Musa and J.Eriksson Tracking Unmodified Smartphones
Using Wi-Fi Monitors, SenSys’12, November 6–9, 2012,
Toronto

[13] Lubelium routers http://www.libelium.com Retrieved: Jan,
2013

[14] Google Cloud Messaging
http://developer.android.com/google/gcm/index.html
Retrieved: Jan, 2013

[15] Apple Push Notification Service
http://developer.apple.com/library/mac/#documentation/Netw
orkingInternet/Conceptual/RemoteNotificationsPG/ApplePus
hService/ApplePushService.html Retrievd: Jav, 2012

[16] S. Zhao, P.Lee, J.Lui, X.Guan, X.Ma, and J.Tao Cloud-Based
Push-Styled Mobile Botnets: A Case Study of Exploiting the
Cloud to Device Messaging Service ACSAC ’12 Dec.3-7,
2012, Orlando, Florida USA

