
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 8, no.2, 2020

Abstract - Threat modelling of a computer system is based on

the system analysis of its architecture on early development
stages (requirements, design) and creation of a threat model
that represents security aspects of the system (threats and
mitigations). Used in this field means, like data flow diagrams
(DFD) and Application threat modelling approach (OWASP,
Microsoft), are mainly informal and hard to involve
automation.

In order to overcome these restrictions, we have created the
ontology-driven threat modelling (OdTM) framework, which
allows to use graphical notation of DFD diagrams and semantic
domain-specific threat models to build threat models for
different computer systems. Each domain-specific threat model
has a set of typical components of some subject area and
threats/countermeasures associated with these components. An
end user can describe a computer system with DFD diagram(s),
then reasoning procedures are able to build a threat model for
that system.

The OdTM framework consists of a common approach of
the architectural security analysis and method of semantic
interpretation of DFD diagrams and automatic reasoning of
relevant threats and countermeasures. We have developed the
base threat model as OWL (Web ontology language) ontology
that enables creation of domain-specific threat models as OWL
ontologies and extension them with different external
knowledge sources (knowledge “mining”, the Linked Open
Data etc.). To illustrate proposed approach, we have used a
semantic version of a model that depicts common threats
against cloud computer systems.

Keywords — software security, knowledge management,

threat modelling, OWL, DFD.

I. INTRODUCTION
Threat modelling is a process of identification of security

threats and their countermeasures, aimed to increase security
level of computer systems. Common approach of the threat
modelling is based on the analysis of structure and
organization of a computer system (i.e. its architecture) on
the early stages of its development (requirements, design)
and building a threat model that represents all the security
aspects of the system.

There are some challenges with the threat modelling. Its
practices and methods are principally informal and involving
of formalization and automation is quite hard there [1].
Current means in this field give a development team flexible
features to define, consider, document, evaluate, and discuss
threats. However, there is a lack of formal approaches to

Manuscript received October 30, 2019.
Andrei Brazhuk (e-mail: brazhuk@grsu.by) and Evgeny Olizarovich (e-

mail: e.olizarovich@grsu.by) are with the Yanka Kupala State University
of Grodno, Grodno, Republic of Belarus.

describe a computer system architecture and structured
knowledge sources about threats and their mitigations, which
can be used for the threat modelling automation.

To model computer infrastructure, it has been proposed
the Infrastructure and Network Description Language
(INDL) and Network Markup Language (NML) [2], which
provide ontology-based technology independent descriptions
of computer systems (processing, storages, network
topologies, virtualization etc.); however, their approach has
not become common and there is no tool that supports it
now. Another option is the Common Information Model
(CIM), which is an open standard
(https://www.dmtf.org/standards/cim), defining how
managed elements in IT environment and relationships
between them are represented as common objects. The CIM
means are used on the operation stage of system life cycle
(e.g. Windows Management Instrumentation - WMI), and its
adoption to the design stage seems to be a challenge. So, the
most common approach, used for the security modelling
purposes, is Data Flow Diagrams (DFD) [1], which can be
considered as a way of informal graphical representation of
system architecture.

To describe threats, the special catalogues and languages
are used like Common Attack Pattern Enumeration and
Classification (CAPEC), Common Weakness Enumeration
(CWE), Common Vulnerabilities and Exposures (CVE),
WASC Threat Classification, OWASP, Structured Threat
Information eXpression (STIX). These means are intended
to depict threat structure and taxonomy and provide
answering the questions like what threats may be associated
with a particular design decision, which design decisions are
more suitable to mitigate current threats etc. Most of the
mentioned above knowledge sources are quite informal and
required revision of their terminology; for example, none of
them operates with the “threat” term. So, it can be a
challenge to correlate threats, expressed with end user
terminology, into attacks, weaknesses and vulnerabilities,
described by the existing threat catalogues and CTI (Cyber
Threat Intelligent) systems.

In order to bring a formal approach to this filed we have
created the ontology-driven threat modelling (OdTM)
framework, which includes a common approach of the
architectural security analysis, method of semantic
interpretation of DFD diagrams and automatic reasoning of
relevant threats and countermeasures; that includes the base
threat model, which enables creation of domain-specific
threat models. Each domain-specific model has a set of
typical components of some subject area (e.g. Cloud-based
computer systems) and threats/countermeasures associated

Framework for ontology-driven threat
modelling of modern computer systems

Andrei Brazhuk, Evgeny Olizarovich

14

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 8, no.2, 2020

with these components. An end user can describe its
computer system in terms of a domain-specific model with
DFD diagram(s), then the reasoning procedures are able to
build a threat model for the system. Mathematical
background of used means is based on the descriptive logics
(DL) as a subset of the first-order logics, which have an
ability to describe concepts of domain-specific area and
relations between them in very formal way; also that enables
automatic reasoning features with relatively low
computational complexity. For practical tasks OWL (Web
Ontology Language) can be used, which has initially been
created for the Semantic WEB and can be used for any
knowledge-based system.

To illustrate proposed approach, we have used a semantic
version of the Common Cloud Computing Threat Model
(CCCTM), which is intended to depict common threats
against cloud computer systems from the architectural point
of view.

II. RELATED WORK
The Application threat modelling approach has been

introduced by the OWASP (Open Web Application Security
Project) organization. Their vision of the threat modelling
process includes three stages: Decompose the Application,
Determine and rank threats, Determine countermeasures and
mitigation. On the first stage a development team can use a
simple representation of application structure based on DFD
diagram(s). This variation of DFD consists of three types of
objects, like “External Entity”, “Process”, “Data Store”; the
“Data Flow” type is used to describe data exchange between
objects; and the “Trust Boundary” type allows to show
borders between groups of objects (Fig. 1). Using the DFD
diagram(s) on the next stages the development team can
build an informal threat model of the application through
discussion and usage the information of existent threat
catalogues.

Fig. 1. A simple DFD diagram

It is known two ways of automation of this field. The first
one deals with automatic building of DFD diagrams from
source code. The tools like PyTM (pypi.org/project/pytm)
and Threatspec (threatspec.org) utilize the following idea:
during coding process a programmer adds special notes to
source codes, after that a special tool should be run that
analysis the notes and creates a DFD diagram.

The second way of the automation deals with analysis of
DFD diagrams. Microsoft has added a little automation there
with the Threat Modelling (TM) tool. The Microsoft TM
software consists of a drag-and-drop DFD editor, simple
rule-based reasoner, report subsystem, and built-in threat
template editor. Threat template describes a threat model of
particular domain-specific area with relevant enumerations
of DFD items and threats related to these items. Using the
model template an end user is able to depict its system as a
DFD diagram (Fig. 1), and then automatically obtain a list of
the relevant threats (Fig. 2).

Fig. 2. List of threats in Microsoft TM

Threat template is XML document that contains list of

possible components (stencils) of system architecture and
threat descriptions (threat types). Stencils can form two-level
hierarchy with derived stencils; and threat types can be
classified into categories. Each stencil has a set of
properties, which can have fixed values (constraints).

Each threat type has a set of properties too; and flow-
based rules can be associated with a threat type both for
including it in a list and ignoring the threat for particular
application. Threat rule can be “attached” to flow object.
Microsoft uses a simple rule language to describe these
rules. Each flow has starting object (source) and ending
object (target). Using these objects, it might be possible to
create a rule like:

target is [External Service] and flow is [Data Flow]

where “External Service” and “Data Flow” are examples of
stencils.

Also properties of objects can be used in rules, like:

15

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 8, no.2, 2020

target.[service_responsibility] is ‘uncontrolled’ and
flow.[flow_type] is ‘data’

where “service_responsibility” and “flow_type” are
properties of the stencils. The language also allows to say
that some flow crosses some boundary; and you can use
logical primitives (“and”, “or”, “not”).

There have been some works, dedicated to research and
creation of domain-specific models based on DFD, like
Software define networks (SDN) [3], health systems [4, 5],
and real-time web-conferencing [6].

Using the Microsoft TM tool and threat rule language we
also used to implement the Common Cloud Computing
Threat Model (CCCTM). It describes basic threats against
cloud computer systems from the architectural point of view.
Proposed threat template has freely been published with the
GitHub service (github.com/nets4geeks/CCCTM_template)
and Fig. 1-2 show an example of the CCCTM usage. The
CCCTM research has found out couple issues with the
Microsoft implementation. Their tool operates with two
level hierarchy of stencils, however for description of
complex computer systems it usually requires more layers of
abstraction. Also there is a lack of full-featured mitigation
hierarchy, which would allow a user to choose a mitigation
to a threat from a relevant list.

There are few researches aimed to improve the Microsoft
approach. For example, the work [7] has proposed an
approach to architectural risk analysis that leverages the
threat modelling by introduction of extended Data Flow
Diagrams (EDFD), declaring a few improvements to DFD,
e.g. decomposition of diagram components, bidirectional
channels; provision of a threat pattern catalogue in a
machine readable form (their knowledge base uses a
domain-specific rule language, based on a graph query
language); and creation of a visual EDFD viewer. That work
contains great results, however in our opinion the OWL and
DL background, as an implementation of object-oriented
design approach to the threat modelling, has a few
advantages (e.g. better representation for users, stricter
formalization) over the structured methods used by the graph
approach.

III. ONTOLOGY-DRIVEN THREAT MODELLING APPROACH
The Ontology-driven threat modelling (OdTM) approach

is intended to improve the architectural security analysis of
computer systems by involving formalization and
automation of its procedures. On the top would be a system,
that allows an end user to depict different aspects of its
application with DFD diagrams and automatically identify
security threats and process them (including finding the
relevant mitigations). Behind that there are ontology-driven
models and methods that enable semi-automatic building of
domain-specific threat models, creation of libraries of DFD
components and threat related to them, and analysis of user
DFD diagrams.

Fig. 3 shows the structure of the OdTM approach. Base
threat model, implemented as OWL ontology, enables
necessary automatic reasoning features and contains basic
concepts and individuals, representing components of DFD
diagrams, threats, mitigations, and their properties.

Fig. 3. Main components of the OdTM framework

If extend the basic model with specific components,
threats and mitigations, related to an architecture of
particular type of computer system, it can be possible to
create a domain-specific threat model. There are number
ways to enrich the domain-specific security knowledge:
manually by experts, with mining knowledge from
unstructured and structured traditional sources (e.g. attack,
threat, vulnerability catalogues), and usage of semantic
structured sources, in particular, the LOD (Linked Open
Data) cloud. Automatic data mining and the LOD integration
allow to keep the relevance of the domain-specific threat
models. Domain-specific threat models are represented as
OWL ontologies too, but they can be connected with
different external linked data sources (other OWL ontologies
and RDF data sets).

An end user depicts its computer system as DFD
diagram(s). Then a set of reasoning and inferring procedures
are able to automatically build lists of relevant threats and
mitigations from those graphical user interpretations of the
target computer system and domain specific threat model.

IV. SEMANTIC INTERPRETATION OF DFD DIAGRAMS
The OdTM base threat model as OWL ontology enables

semantic interpretation of DFD diagrams and automatic
building of threat/countermeasure lists by reasoning features.
The ontology in the functional syntax has been freely
published as the OdTMBaseThreatModel.owl file with the
GitHub service (github.com/nets4geeks/OdTM).

According common approach (OWASP, Microsoft) DFD
diagram, used in architectural security analysis, should
consist of “Stencils” (Fig. 4): “Targets” represent
architectural components, connected by directional flows
(“DataFlows”), which might be restricted by “Trust
Boundaries”. There are three types of Targets in the classical
model: “Processes”, external entities (“ExternalInteractor”)
and “DataStores”. Boundaries can be like lines
(“TrustLineBoundary”) and areas (“TrustBorderBoundary”).

16

https://github.com/nets4geeks/CCCTM_template
https://github.com/nets4geeks/OdTM

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 8, no.2, 2020

Fig. 4. Stencils and their properties of OdTM base threat model

Data Flow concept is defined by its starting and ending
edges (Source and Target), line boundaries crossed by it,
and “border” boundaries, in which it is included. To model
the edges, the “hasSource”and “hasTarget” properties are
used (it is supposed that their ranges are Targets), to model
line boundaries the “crosses” property is used (range is
“TrustLineBoundary”). The “includes” property has the
“TrustBorderBoundary” as a domain and Target as a range
(it requires a root box, to which all the items should be
included by default).

To represent DFD diagram we should populate the
ontology with instances. The description of a data flow
instance and its edges is like:

Process (pr1) (1)
Process (pr2)
DataFlow (flow)
hasSource (flow, pr1)
hasTarget (flow, pr2)

where “flow” is an instance of the DataFlow concept, and
“pr1”, “pr2” are instances of the “Process” concept. The
“hasSource (flow, pr1)” phrase tells “flow” has source
“pr1”.

The applying of a line boundary is like:

TrustLineBoundary (line) (2)
crosses (flow, line)

The applying of a border boundary is like:

TrustBorderBoundary (box) (3)
includes (box, flow)

Ontology-based reasoning allows to get some extra
information from the example of data flow. So using inverse
properties “isSourceOf” and “isTargetOf” to “hasSource”
and “hasTarget”, it is determined that “pr1” is a source of
“flow”, and “pr2” is its target. Also through the “divides”
property (inverse to “crosses”) it argued that “line” divides
“flow”; and the “isIncluded” property is inverse to

“includes” and tells that “flow” is included into “box”.

V. AUTOMATIC REASONING THREATS AND
COUNTERMEASURES

It can be argued that components of a computer system
mainly suffer from remote threats, so threats should be
applied to data flows. The “Threat” concept (Fig. 5) from
the base model “affects” some data flow (the domain is
supposed to be “Threat”, and range as “DataFlow”). Also
the inverse property called “isAffectedBy” is used.

Fig. 5. Threats and countermeasures of OdTM base threat model

A flow template for a particular threat should be defined
by the “hasSource” and “hasTarget” properties like:

Template1 ≡ DataFlow ∩ ∃hasSource.Process ∩ (4)
∃hasTarget.Process ∩ ∃crosses.TrustLineBoundary

(the “≡” symbol tells a concept is a precisely described here
thing; “∩” is a conjunction; and “∃” means has a property
with appropriate range).

Also it is possible to use properties of stencils (like
DataFlow ∩ ∃ usesProtocol.HTTPProtocol), so that can be
extended to a template language the similar like Microsoft
uses (issues might be with negation, cardinality restrictions
and other things based on the closed world assumption).

To enable automatic reasoning, it requires to create a
threat instance and associate it with a data flow, like:

Threat (threat1) (5)
Template1 ⊆ ∃isAffectedBy.{ threat1}

(the “⊆” symbol means “is a subclass of”; and inside “{}”
an instance is put).

The “flow” instance (1-2) will be recognized as an
instance of the “Template1” concept (4), so according (5)
“flow” is affected by “threat1”, and “threat1” affects “flow”
(as “affects” is reverse to “isAffectedBy”).

By creation flow templates like (4) and descriptions of
threats like (5) it is possible to form a model of threats. Then
if that model was combined with a set of instances
(processes, flows, boundaries, external entities, data stores
etc.), representing a DFD diagram, relevant threat instances
would be reasoned as the “isAffectedBy” properties of the
flow instances, and the affected flows as the “affects”
properties of the threats.

To manage knowledge about countermeasures, the
“Countermeasure” concept and “isProtectedBy” property are

17

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 8, no.2, 2020

used. If apply a countermeasure instance and connect it to a
flow instance, like:

Countermeasure (count1) (6)
Template1 ⊆ ∃ isProtectedBy.{count1}

it enables the automatic reasoning of possible
countermeasures, similar to threats.

Other way to identify countermeasures is to map them to
threats, like:

Countermeasure (count2) (7)
mitigates (count2, threat1)

For more precise classification and labelling of threats
and countermeasures a set of security objectives (SO) or the
STRIDE (Spoofing, Tampering, Repudiation, Information
Disclosure, Denial of Service, Elevation of Privilege) model
can be used. The difference between the SO and STRIDE
approaches is that STRIDE tells about the malicious goals,
i.e. represents an adversary point of view rather a viewpoint
of resource owner, as security objectives. A list of the
security objectives used here includes: Confidentiality,
Integrity, and Availability (the CIA triad) and extra
objectives like Authentication, Non-Repudiation, and
Authorization.

To involve the labelling of threats and countermeasures
the “labelsSO” and “labelsSTRIDE” properties can be used,
like:

labelsSO(count1, SO_Availability) (8)
labelsSTRIDE (threat1, STRIDE_Denial_of_Service)

VI. BUILDING DOMAIN-SPECIFIC THREAT MODEL
Creation of domain-specific threat model requires two

types of activities:
-Extension of the base hierarchy of concepts by domain-

specific concepts;
-Definition of threats and mitigations via data flow

templates, as the examples (4-5) show, and applying the
labels, as the example (8) shows.

To illustrate the building process of a domain-specific
threat model we use the CCCTM model, previously adopted
as a template for the Microsoft TM tool
(github.com/nets4geeks/CCCTM_template). Full description
of CCCTM is out of scope of this work (to get details see the
link above). Ontology-based implementation of CCCTM,
depicted here, is accessible from GitHub too
(github.com/nets4geeks/OdTM) as the OdTMCCCTM.owl
file. Note, both of the CCCTM implementations do not have
a mitigation hierarchy, so this aspect is missed here.

Fig. 6. Components of CCCTM model

The hierarchy of the original CCCTM components is
shown in Fig. 6. Integration of this hierarchy to the base
ontology can be done by different approaches. One way
might be to break the existent hierarchy up with mapping to
the concepts of the base threat model, like:

CloudApplication ⊆ Process (9)
Container ⊆ CloudApplication
VirtualMachine ⊆ CloudApplication

where “Process” is taken from the base model, and:

ExternalService ⊆ ExternalInteractor (10)
GenericUser ⊆ ExternalInteractor
LocalManager ⊆ GenericUser
RemoteUser ⊆ GenericUser

where “ExternalInteractor” is taken from the base model,
and:

ApplicationFlow ⊆ DataFlow (11)
ManagementFlow ⊆ DataFlow
SynchronizationFlow ⊆ DataFlow

where “DataFlow” is taken from the base model, and:

CloudBoundary ⊆ TrustBorderBoundary (12)
TenantBoundary ⊆ TrustBorderBoundary

where “TrustBorderBoundary” is taken from the base model.
Also it might be possible to apply properties to derived

concepts. For example, a cloud application can be
characterized by the deployment model (public, private,
community, hybrid etc.) and service layer (IaaS, PaaS,
SaaS).

An implementation of the deployment model in OWL
might be done with applying the “hasCloudModel” property.
Its domain is supposed to be “CloudApplication”, and range
as the “CloudModel” concept, like:

CloudModel ≡ { publicCloudModel, (13)
privateCloudModel, communityCloudModel,
hybridCloudModel }

An implementation of the service layer with OWL might
be done by applying the “hasServiceLayer” property. Its
domain is supposed to be “CloudApplication”, and range as
the “ServiceLayer” concept, like:

ServiceLayer ≡ { IaaSServiceLayer, (14)
PaaSServiceLayer, SaaSServiceLayer }

Using (13) and (14) you can define the “VirtualMachine”
and “PrivateCloudVirtualMachine” concepts like:

VirtualMachine ≡ CloudApplication ∩ (15)
∃ hasServiceLayer.{IaaSServiceLayer}

PrivateCloudVirtualMachine ≡ VirtualMachine ∩ (16)
∃ hasCloudModel.{privateCloudModel}

The next step is the definition of threats via data flow
templates. There are nine categories of the threats in
CCCTM (problems of using External Services, problems of
using Cloud Applications, threats to Cloud Applications,
management problems of Cloud Applications, organizational

18

https://github.com/nets4geeks/CCCTM_template
https://github.com/nets4geeks/OdTM
https://github.com/nets4geeks/OdTM

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 8, no.2, 2020

problems of Cloud Applications, network flow problems,
Management Flow problems, Synchronization Flow
problems, Data Flow problems).

For example, to match threats related to usage of cloud
applications (i.e. going from any source to the
“CloudApplication”) a template should be used like:

TemplateC ≡ ApplicationFlow ∩ \ (17)
∃hasTarget.CloudApplication
Threat (threat_failure_of_application) \
TemplateC ⊆ \
∃ isAffectedBy.{threat_failure_of_application}

VII. IMPLEMENTATION
You can download the ontology-driven base threat model

and CCCTM ontologies from GitHub and using the Protege
ontology editor (protege.stanford.edu) apply to the CCCTM
ontology a simple DFD description (e.g. include an external
DNS service, cloud application and remote user) like:

ExternalService (dns) (18)
CloudService (app)
RemoteUser (user)
ApplicationFlow (flow1)
hasSource (flow1, app)
hasTarget (flow1, dns)
ApplicationFlow (flow2)
hasSource (flow2, user)
hasTarget (flow2, app)

Fig. 7. Threats of “flow1” in Protege

Fig. 8. Threats of “flow2” in Protege

After performing the reasoning procedure, you have got
the threat list for the flow1 (Fig. 7) and flow2 (Fig. 8)
instances. That shows a possibility to apply the ontology-
driven approach to the threat modelling process, and receive
the similar results to existent means (see Fig. 1-2).

VIII. CONCLUSIONS
Our ontology-driven threat modelling approach allows to

use graphical notation of DFD diagrams and semantic
models to build threat models for modern computer systems.
It enables creation of semantic models of different domain-
specific areas of IT with well-formed hierarchies of
components, threats and mitigations. We have used the
description logics as mathematical background and the OWL
language as its implementation; that allows to automate the
diagram analysis process and reasoning of relevant threats
and mitigations.

However, given examples, implemented with Protege,
should be considered as proof of concept. For example,
advanced implementation of this approach might require to
divide namespaces of components and threats for domain-
specific threat model (i.e. to create different ontologies for
components and threats) to make the hierarchy generation
process easier.

In general, a production implementation of the proposed
approach requires solving two challenges:

-Automation of creation of domain-specific threat models
based on knowledge mining from traditional data sources
and integration with existent semantic data sources.

-Creation of software means for building DFD diagrams
and their analysis based on domain-specific threat models.

In order to resolve the first challenge, we have researched
the problem of extracting and usage knowledge of public
directories of software attacks, vulnerabilities, weaknesses to
build semantic threat models. In particular, we have built the
semantic model (OWL ontology) [8] that is based on the
attack pattern (CAPEC - Common Attack Pattern
Enumeration and Classification) and weakness (CWE -
Common Weakness Enumeration) concepts, and can group
(classify) security concepts according given criteria. The
work [9] has discussed integration of the DBpedia dataset
with the vulnerability catalogue NVD (National
Vulnerability Database). The entities (software products and
vendors), obtained from CPE (Common Platform
Enumeration), have been mapped with the corresponding
elements of DBpedia through the DBpedia Spotlight service.
NVD uses the CPE entities as a naming scheme for software
products, so the semantic model allows to identify NVD
records, related to software products, mentioned in DBpedia.
The main task for future research is to find a way of
mapping attacks and weaknesses (also vulnerabilities as
instances of weakness type) to corresponding components of
ontology-driven threat models.

Also it is the actual challenge to develop a software means
for visual threat modelling. Its features should include ability
to extract component hierarchy and their properties from
ontology of domain-specific threat model to build
appropriate library of DFD components. Also it requires a
DFD editor, which allows import/export of DFD diagrams to

19

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 8, no.2, 2020

common XML format; its backend should be able to map
graphical notation of DFD diagrams to DL facts (instances
of ontology and their properties) and automatically infer
threats and mitigations.

REFERENCES
[1] Abi-Antoun M., Wang D., Torr P. Checking threat modeling data

flow diagrams for implementation conformance and security
//Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering. – ACM, 2007. – С.
393-396.

[2] Ghijsen, M. A semantic-web approach for modeling computing
infrastructures. / M. Ghijsen [et al.] // Computers & Electrical
Engineering, - 2013. - 39(8). - P. 2553-2565.

[3] Tasch M. et al. Security analysis of security applications for software
defined networks //Proceedings of the AINTEC 2014 on Asian
Internet Engineering Conference. – ACM, 2014. – С. 23.

[4] Abomhara M., Gerdes M., Køien G. M. A stride-based threat model
for telehealth systems //Norsk informasjonssikkerhetskonferanse
(NISK). – 2015. – Т. 8. – №. 1. – С. 82-96.

[5] Cagnazzo M. et al. Threat modeling for mobile health systems //2018
IEEE Wireless Communications and Networking Conference
Workshops (WCNCW). – IEEE, 2018. – С. 314-319.

[6] Sion L. et al. Solution-aware data flow diagrams for security threat
modeling //Proceedings of the 33rd Annual ACM Symposium on
Applied Computing. – ACM, 2018. – С. 1425-1432.

[7] Berger B. J., Sohr K., Koschke R. Automatically extracting threats
from extended data flow diagrams //International Symposium on
Engineering Secure Software and Systems. – Springer, Cham, 2016.
– С. 56-71.

[8] Brazhuk A. Semantic model of attacks and vulnerabilities based on
CAPEC and CWE dictionaries //International Journal of Open
Information Technologies. – 2019. – Т. 7. – №. 3. – С. 38-41.

[9] Brazhuk A. Building annotated semantic model of software products
towards integration of DBpedia with NVD vulnerability dataset
//International Journal of Open Information Technologies. – 2019. –
Т. 7. – №. 7. – С. 35-41.

Andrei BRAZHUK
Researcher, senior lecturer at the Yanka Kupala State University of Grodno
(Belarus); the PhD student (system analysis) at Belarusian State University
of Informatics and Radioelectronics (Minsk, Belarus).

Evgeny OLIZAROVICH
PhD in Engineering sciences, Associate Professor, Head of the Information
and Analytical Center, Yanka Kupala State University of Grodno (Belarus).

20

	I. INTRODUCTION
	II. Related work
	III. Ontology-driven threat modelling approach
	IV. Semantic interpretation of DFD diagrams
	V. Automatic reasoning threats and countermeasures
	VI. Building domain-specific threat model
	VII. Implementation
	VIII. Conclusions
	References

