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Abstract — Modern Graphics Processing Units (GPUs) be-

long to the “Single Instruction Multiple Data” (SIMD) compu-
tational architecture class. Due to inefficient execution of di-
vergent branches, SIMD devices can lose performance on nest-
ed loops with data-dependent exit conditions. A specialized 
compile-time Control Flow Graph (CFG) transformation rou-
tine can solve this problem. The routine reduces loop nest level 
by merging the inner loop with the outer loop. The trans-
formed program remains logically equivalent to the original 
one, while its branching pattern becomes better suited for exe-
cution on a SIMD device. The routine is implemented as a 
Low-Level Virtual Machine (LLVM) Transformation Pass. 
Depending on the dataset and nested loops parameters, the 
transformation reduces the worst-case running time of a spe-
cialized GPU benchmarking application up to 24 times. 
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I. INTRODUCTION 

SIMD devices, such as GPUs, suffer significant perfor-
mance loss when running an algorithm that relies on unpre-
dictable conditional jumps. This inefficiency stems from the 
fact that SIMD devices serialize execution of divergent 
branches [OPT2008]. However, the divergence problem can 
be solved for some types of branching constructs by apply-
ing a corresponding code transformation routine. In this 
paper, we build such a routine for the case of nested loops 
with data-dependent number of iterations. We develop a 
proof-of-concept version of the transformation for the 
LLVM compiler platform and apply it to a benchmark utili-
ty designed to simulate nested loops constructs that can be 
found in real-life applications. 

In the rest of the Section I we describe the SIMD branch-
ing model and the problem of nested loops in greater detail. 
In Section II, we describe some concepts used in this work, 
such as control flow graph and natural loop. Section III 
introduces the actual transformation routine. Section IV 
describes the proof-of-concept LLVM Transformation Pass 
implementing the routine. Section V contains an experi-
mental evaluation of the transformation’s effect on a 
benchmarking application. Section VI contains information 
on related works. Section VII concludes the paper with the 
discussion of the results. 
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A. SIMD architecture and conditional branch execution 
problem in GPUs 
SIMD acronym stands for Single Instruction Multiple Data, 
a class of parallel computers [2]. SIMD machines are often 
described as multiprocessors, in contrast to traditional pro-
cessors that belong to the Single Instruction Single Data 
(SISD) class. In a SIMD machine, a single Control Unit 
(CU) dispatches the same single instruction to multiple Pro-
cessing Units (PU) belonging to the same working group, 
called the SIMD group. Working in a «lockstep» mode with 
other PUs of the group, each PU applies the same instruc-
tion to a different element of a dataset (Fig. 1). This parallel 
execution method makes SIMD architecture very efficient at 
vector processing. 

 
Fig. 1. SIMD and SISD architectures. 

Unfortunately, SIMD design has a drawback that becomes 
evident during the execution of conditional expressions: 
different branches of the program have to run different 
instructions, but only a single instruction type can be issued 
by CU at once to all PUs of the SIMD group. 

 
Fig. 2. Serialization of branch execution on SIMD platforms. 

Modern GPUs handle this situation by serializing the 
execution of divergent branches (Fig. 2). According to the 
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branching condition, a group of computational threads exe-
cuted within a single SIMD group (a warp in NVIDIA’s 
terminology [3]) is split into two subgroups L and R. The 
threads in group L run (their PUs are active) while the 
threads in group R wait in the «frozen» state (their PUs are 
idle). When group L reaches a reconvergence point in the 
program, it stops and waits in the «frozen» state for group R 
to catch up. After group R reaches the same reconvergence 
point, the execution continues as usual. In the case of a sin-
gle-level conditional branch, up to ½ of PUs can stay idle at 
any moment, waiting for other threads to reach a common 
point in program execution. 

Unfortunately, nested conditional branches (e.g., nested 
“if-else” statements or nested “while” loops) lead to nested 
serialization, thread subgroups splitting to sub-subgroups, 
until a subgroup consists of a single thread, corresponding to 
a single active PU (Fig. 2). This effect can decrease GPU 
performance up to n times, where n is the warp size (32 or 
64 in modern GPUs [3], [4]). 

B. The problem of nested loops 
Consider a GPU program that contains two “while” loops 

A and B, such that loop B is nested inside loop A. Loop A 
processes a list of elements of type a. Loop B processes 
elements of type b. Processing one element of type a re-
quires sequential processing of several elements of type b 
(e.g., each a element is a container that contains some b 
elements). If the amount of b elements is different for each a 
element processed in a SIMD group, the loss of performance 
from branching is inevitable. Intuitively, this happens be-
cause the threads that had already processed all b elements 
in their current a element and thus had become ready to 
leave the B loop (and get the next a element) must wait for 
the other threads of their SIMD group to catch up. Only then 
the group can step into the next iteration of loop A and get 
new a elements for processing. Combining A and B into a 
single loop prevents this effect by forcing a thread to check 
if it is ready to process the next a element every time it fin-
ishes processing any b element [5]. 

II. PRELIMINARIES 

A. Control flow graph 
Control Flow Graph (CFG) represents all paths of execu-

tion of a program [6]. It gives a natural way to study and 
manipulate the effects of control statements and conditional 
jumps. 

CFG consists of Basic Blocks (BBs), connected by di-
rected edges that represent control flow (execution se-
quence) of the program. A basic block represents a straight-
line sequence of instructions with only one entry point (the 
start of the block) and only one exit point (the end of the 
block). Execution of instructions in a basic block always 
starts at its first instruction and ends with its last instruction, 
which is always a (conditional or unconditional) jump in-
struction. In a CFG, the entry and exit blocks represent the 
beginning and the end of the control flow. 

In a flow graph, node d is said to dominate node n if eve-
ry path from entry to n goes through d. An edge from node 
N (latch) to node H (header) is said to be a back edge if H 

dominates N. If all nodes are still reachable from entry node 
after removal of all back edges, the CFG is said to be reduc-
ible. Structured programming always produces reducible 
CFGs. Any irreducible CFG can be transformed into its 
reducible equivalent using node splitting. All loops of a 
reducible CFG are natural loops (Fig. 3). 

B. Natural loops 
A natural loop L of a back edge (𝑁 → 𝐻) is the smallest 

set of nodes satisfying the following properties: 
1. 𝐻,𝑁 ∈ 𝐿; 
2. for any two nodes 𝑛,𝑛′ ∈ 𝐿, there exists a path from 𝑛 

to 𝑛′; 
3. for any node 𝑛 ∈ 𝐿, the set of its predecessors 

𝑃𝑟𝑒𝑑(𝑛) ⊆ 𝑃𝑟𝑒𝑑(𝐻). 
Informally, a natural loop is a cycle in a graph that is 

formed by a single back edge, and that has no jumps into the 
middle of its body from other parts of the program. Control 
flow enters a natural loop only through its header and leaves 
it through one or more blocks with successors outside the 
loop (exit blocks). 

  

Fig. 3. An example of a 
natural loop. 

Fig. 4. Disjoint and nested natural 
loops. 

Natural loops of a reducible graph form a tree hierarchy, 
where any pair of natural loops is either disjoint or nested 
(Fig. 4). For the rest of this paper, we will discuss only re-
ducible graphs and natural loops. 

III. LOOP NEST REDUCTION 

A. Transformation procedure 
We presume the graph G to be reducible and loops A and 

B to be nested natural loops (B is nested in A). For simplici-
ty, we consider loop B as a single basic block, holding the 
roles of the header, the latch, and the exit blocks simultane-
ously. Loop A’s header block 𝐴𝑤ℎ is non-empty (e.g., it 
contains some “payload” instructions). It precedes loop B. 
Loop A’s exit/latch block 𝐴𝑒 follows loop B immediately 
(Fig. 5a). The variables controlling A and B’s exit conditions 
are named accordingly: a and b. 

The basic idea of the loop nest reduction transformation is 
to use A’s back edge to “emulate” B’s back edge, and then 
isolate instructions exclusive to A by putting them under 
conditional bypass (the latter procedure is known as 
predication). The procedure starts with the original CFG 
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(Fig. 5a) and goes as follows: 
1. Split 𝐴ℎ𝑤 into the empty header block 𝐴ℎ and the 

“work” block 𝐴𝑤 (Fig. 5b); 
2. Put a new empty latch block 𝐴𝑙 on A’s back edge, thus 

removing the latch role from 𝐴𝑒 (Fig. 5b); 
3. Redirect B’s back edge to point to 𝐴𝑙 (Fig. 5c); 
4. Create pre-header 𝐴𝑝 with “store false into variable b” 

instruction (Fig. 5c); 
5. Add conditional jump instruction to 𝐴ℎ, such that if b is 

false, 𝐴𝑤 will be executed next, and if b is true, execu-
tion will jump straight to the B loop header (Fig. 5c). 
The resulting CFG is shown in Fig. 5c. 

We do not describe here the transformation procedures 
for every possible CFG configuration that include nested 
loops since these can be trivially derived from the one de-
scribed above. For example, if the outer loop contains sev-
eral independent inner loops instead of one, steps 3-5 can be 
applied to each of these inner loops individually. In general, 
it is possible to apply the procedure iteratively to reduce the 
depth of the natural loops tree to any desired level. 

 
Fig. 5. Nested loops fusion transformation. 

B. The correctness of the transformation 
Let us compare the execution of the original and trans-

formed CFGs. In original CFG we go straight to the 
execution of A’s “payload” instructions inside 𝐴ℎ𝑤 block. In 
the transformed CFG, we instead first initialize b variable to 
false at 𝐴𝑝 and proceed to check its value at 𝐴ℎ. This check 
leads to the execution of 𝐴𝑤 where A’s “payload” is done, as 
in original CFG. 

Then we proceed into loop 𝐵’s body basic block and 
compute 𝑏 condition value. Assume the condition 𝑏 is true 
and we need to take another iteration of the loop 𝐵. In the 
original CFG, we immediately jump back to the beginning 
of loop 𝐵’s basic block. In the transformed CFG we jump to 
loop 𝐴’s new latch block 𝐴𝑙 and immediately make an un-
conditional jump to 𝐴ℎ. Next, because b is true, we take the 
conditional jump into loop 𝐵’s basic block, as if executing 
the original CFG. Notice that we haven’t executed “pay-

load” instructions specific to loop 𝐴, because they were 
moved to 𝐴𝑤, and we “jumped over it” via conditional 
𝐴ℎ → 𝐵 edge. Thus, the execution of 𝐴𝑤 is impossible when 
𝑏 is true. 

When 𝑏 becomes false, the execution process must leave 
loop 𝐵 and take on a new iteration of loop 𝐴. In both vari-
ants of CFG after 𝑏 becomes false, the conditional jump 
instruction at the end of loop 𝐵’s basic block leads to 𝐴𝑒. 
There, we execute instructions specific to loop 𝐴, evaluate 
condition 𝑎 (in this example, to true) and take conditional 
jump directly  to 𝐴ℎ𝑤 (in case of original CFG) or to 𝐴𝑙 and 
then to 𝐴ℎ (in the transformed one). Original CFG then exe-
cutes A’s “payload” instructions contained in 𝐴ℎ𝑤. Trans-
formed CFG checks b’s value at 𝐴ℎ block, sees it is false 
and jumps to 𝐴𝑤 where it executes A’s “payload” instruc-
tions too. 

The case when 𝑎 and 𝑏 are both false, resulting in an es-
cape from the loop 𝐴, can be traced in a similar manner. It is 
easy to see that, in regards to “payload” processing, both 
CFGs execution results are equivalent, though their execu-
tion paths differ. The semantics of the transformed CFG is 
always equivalent to the semantics of the original CFG. The 
instructions that were added in the process of the transfor-
mation do not interfere in any way with the original data and 
stay local to the loops’ bounds. 

The transformed CFG’s pattern of making jumps to 𝐴ℎ 
after each execution of B adds some overhead. However, for 
SIMD architectures this pays off because it makes all 
threads of a SIMD group regularly “check for new work” 
for cycle B by speculatively executing cycle A’s “payload” 
instructions in 𝐴𝑤. 

C. Estimation of potential benefit 
Sometimes, the overhead of speculative checks can ex-

ceed the potential benefits of the higher usage of PUs. To 
describe the conditions that make the transformation viable, 
let us first introduce the following notation: 
𝑇𝑎 – the time to execute 𝐴𝑤 basic block (the external cy-

cle’s “payload” instructions); 
𝑇𝑏  – the time to execute B’s instructions; 
𝑁 – the total number of threads/PUs in a SIMD group 

(size of a warp in NVIDIA’s terms); 
𝑛 – the number of idle threads in a SIMD group; 
(𝑁 − 𝑛)𝑇𝑎 - the “cost” of going to the outer loop to get 

new work for the idle threads; 
𝑛𝑇𝑏  – the potential payoff from getting new work for the 

idle threads (i.e., how much work they would do at the next 
iteration of B if we get new work for them). 

At the end of each iteration of the internal loop, it makes 
sense to go for the new work if the potential gain in the 
number of payload elements processed at the next cycle 
outweighs the costs: 𝑛𝑇𝑏 −  (𝑁 − 𝑛)𝑇𝑎 > 0. Or, put another 
way: 

𝑛
𝑁

>
𝑇𝑎

𝑇𝑎 + 𝑇𝑏
; (1) 

Formula (1) can be interpreted as follows: the “heavier” 
the instructions in the inner cycle relative to the instructions 
exclusive to the outer cycle, and the more threads would on 
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average stay idle in the untransformed program, the more 
speed up the transformation will provide. Note that the 
potential benefit of the transformation is limited by warp 
size N because of 𝑛 ≤ 𝑁. 

IV. IMPLEMENTATION 

A. Low-Level Virtual Machine framework 
Low-Level Virtual Machine (LLVM) [7], [8] framework 

provides a set of compilers, translators, and other tools 
working with the LLVM Intermediate Representation lan-
guage (IR) [7]. IR is a strongly typed low-level language for 
a virtual machine with an infinite number of registers, ex-
pressed in Single State Assignment (SSA) form [9]. LLVM 
is comprised of “front-ends” that enable compilation from 
high-level programming languages into IR, and “back-ends” 
that translate IR into binary machine code for different 
hardware platforms. In between these stages, a program in 
the IR form may undergo optimizations implemented within 
a framework of so-called “transformation passes.” 

B. Transformation pass 
We developed a proof-of-concept LLVM IR transfor-

mation pass that implements the loop nest reduction proce-
dure described above. We also developed a specific bench-
mark (see the next subsection) that emulates unpredictable 
nested work queues. The source code for both transfor-
mation pass and test application can be found at [10]. We 
use NVIDIA CUDA [3] as a GPGPU language of choice in 
our test application, but the transformation pass is not lim-
ited to CUDA or any other hardware platform since it works 
directly on IR. It can be applied without any changes to any 
program translated to IR form. 

 

Fig. 6. CUDA program compilation and transformation process 
with gpucc (clang) compiler and LLVM tools. 

C. Applying the transformation 
The program should be first translated to the IR form. We 

achieve this by using the open-source GPGPU compiler 
“gpucc” [11]. We invoke it via the Clang [12] compiler 
infrastructure by hand and stop the compilation process after 
the GPU, and host parts of the program are translated to IR. 
Next, we apply our loop nest reduction pass to the GPU part 
of the IR code with the “opt” utility [7]. Then compilation is 
continued as usual (Fig. 6). 

Disassembly of the NVPTX1 binary [3], [11] confirms 
that only one back edge remains in the CFG after applying 
the transformation. 

V. EXPERIMENTAL EVALUATION 

A. Benchmarking application description 
Formula (1) suggests that the transformation’s efficiency 

for a given algorithm depends on two factors:  
a) the ratio of “weights” of the inner loop’s instruc-

tion sequence compared to the outer loop; 
b) the average relative number of threads leaving the 

inner loop early. 
(a) mostly depends on the properties of the algorithm itself, 
while (b) depends on the properties of a typical dataset pro-
cessed by the algorithm. To investigate the effects of these 
factors on the viability of the loop nest reduction, we devel-
oped a specialized test application that simulates different 
ratios of loop “weights” and threads’ early exits. 

The benchmark application emulates the behavior of a 
two-level work queue that can be found, for example, in 
some search algorithms [5], [13], [14]. The GPU part of the 
program consists of a pair of nested loops: outer loop A and 
inner loop B, similar to the example given in section II.A. 

Loop B’s body consists of a dummy computational rou-
tine that stands for “useful work” and a command to in-
crease the “useful processing” counter by 1. Loop B stops 
when at least one of the two following conditions becomes 
true: 

1. the loop has been repeated for a fixed number of 
times; 

2. the “early exit” condition has been met. 
The “early exit” sets up a situation when the thread has no 
work at the inner loop and must get to the outer loop to ob-
tain new data. 

Loop A runs for a fixed number of iterations. At the be-
ginning of the first iteration of loop A, a simple pseudo-
random number generator determines which particular 
threads will meet the “early exit” condition. The total num-
ber of threads which will meet the “early exit” condition at 
any iteration of loop A is controlled by parameter k. This 
scheme allows for unbiased distribution of “early exits” 
inside the SIMD group. Also, it simulates the worst possible 
case for SIMD performance, as the threads receive the “ear-
ly exit” signal immediately, thus for 

B. Experimental setup, performance measurement meth-
ods 
Experiments were conducted on Ubuntu Linux 18.04 with 

1 Nvidia Parallel Thread Execution virtual machine and instruction set 
architecture. 
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LLVM-9.0 and CUDA SDK 10.1. Program optimization 
was enabled with “-O3” for both GPU and CPU code. 
CUDA assembler was forced to generate Compute Capabil-
ity 7.0 code [3]. GPU part of the benchmark application was 
run on RTX 2060 NVIDIA GPU. 

Three variants of the original benchmark application were 
produced, with different ratios of computational instructions 
between the external and the internal loops (“A/B ratios” 
equal to 10/1, 1/1, 1/10, 1/100). Next, the transformation 
procedure was applied to produce the corresponding trans-
formed benchmark applications. The execution times of 
each of these original and transformed applications were 
then measured for all 32 possible values of parameter 
𝑘, 0 ≤ 𝑘 ≤ 31. 

C. Experimental results 
In the case of the original application, when 𝑘 = 0, SIMD 

device lose no performance from branch divergence effects, 
because no “early exit” conditions are generated. When 
𝑘 = 31 (32 is the size of a SIMD group of NVIDIA GPUS), 
“early exits” force all but one thread to stay idle. Overall, 
parameter 𝑘 allows us to simulate processing of a dataset 
which has any desired probability of a thread meeting an 
“early exit” event. 

 
Fig. 7. Performance of the benchmark application variants after 
applying loop flattening transformation. Performance is given 

relative to corresponding non-transformed variant. Different data 
lines show benchmark variants with different A/B (outer loop / 

internal loop) “computational costs” ratios. 

Fig. 7 shows the performance of the benchmark applica-
tion variants for different values of 𝑘. Performance is shown 
relative to that of the “original” (non-transformed) applica-
tion with 𝑘 = 0. 

One can immediately see that the execution time for the 
original application does not depend on 𝑘 and always stays 
on the same level. This is expected, because even if all the 
threads except a single one would meet the “early exit” con-
dition, the SIMD architecture will not let any threads get to 
the outer loop. Contrarily, transformed applications will 
always check for the new work, which results in shorter 
execution times for lower values of k. This speculative 
work-checking strategy introduces an overhead that makes 
transformed applications slower than the original for small 
to medium values of 𝑘, for higher 𝐴/𝐵 ratios. Overall, the 

transformation provides good speedups for applications with 
low 𝐴/𝐵 ratios, if the value the of  𝑘 is high i.e., the dataset 
has a high probability of generating an “early exit” event. 
These observations confirm the results of the analysis 
conducted in Section II.D. 

At 𝑘 = 31, the original application loses 97% of perfor-
mance. However, the transformed versions lose only 24%-
56% of performance, depending on their A/B ratio. Thus, 
transformed applications perform up to 24x times faster than 
the original at this dataset. Due to the overhead of the specu-
lative checks, for A/B ratio of 10/1, the transformation starts 
to pay off only from 𝑘 = 14. That roughly corresponds to 
50% probability that a thread will leave the loop B early. 
Starting from A/B ratio of 1/10, the overhead has no effect, 
and for every k, the transformed application runs faster than 
the original one. Curiously, for 0 ≤ 𝑘 ≤ 3 the transformed 
application shows the performance of up to 102%. This can 
be explained by transformation making the CFG more suita-
ble for optimization at the later stages of the compilation 
process. 

VI. RELATED WORKS 
The general method of converting control dependence to 

data dependence was described in 1983 by John R. Allen et 
al. [15]. “Loop flattening” term was coined in 1992 by K. 
Kennedy in [16], where he described the basic idea of re-
ducing a pair of nested loops into a single loop, although in 
a Fortran-specific way. In 1995, the technique was studied, 
still in Fortran context, dissertation [17], and the context of 
sparse matrix-vector multiplication in [18]. The communi-
ty’s interest in optimizing execution of code on SIMD archi-
tectures resurged with advances in GPGPUs programming 
features [1]. 

During the last decade, the scientific effort was focused 
on solving the SIMD branching problem with both hardware 
and software solutions. The hardware-based approach is 
exemplified by dynamic thread regrouping [19], advanced 
methods of mapping control flow to SIMD processors with-
in a bounded region of the program [20], dual-path execu-
tion model [21] and lane permutation [22], execution cycle 
compression [23], hardware-accelerate flattened loops exe-
cution [24]. The software-based solutions for the divergence 
problem included merging similar execution paths via the 
genetic sequencing algorithm [25], building a divergence 
metrics [26], analyzing SIMD group’s size effect on the 
problem [27] and linearization of control flow in SIMD 
programs [28]-[30]. Work [31] uses predication to enable 
loop unrolling for data-dependent. Work [32] by T.D. Han 
and T. S. Abdelrahman is of particular interest because it 
analyzes the same loop flattening transformation as we do. 
Our work is similar to [32] in regards to implementing the 
transformation described in [16] within the LLVM frame-
work. In [32], transformation is evaluated experimentally 
using a synthetic benchmark that simulates a distribution of 
“early exit” events and on some real-life applications. How-
ever, [32]’s authors do not publish the source code for the 
transformation. Our work provides the source code, focuses 
on the synthetic benchmark that simulates the worst case 
performance, and establishes an analytical expression for 
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assessing the transformation feasibility (Section III.C). 

It is important to note that there is some confusion in the 
literature in regards to naming the transformation presented 
in [16]. The authors of [32] name their transformation 
“Loop Merging” instead of “Loop Flattening” and do not 
cite [16]. “Loop Flattening” transformation that is a very 
limited variant of the transformation described in [16] is 
described in [33]. It targets optimization of simple nested 
loops with known iteration counts (i.e., arrays processing) 
and is included in both LLVM and GCC [34]. To honor the 
transformation name used in [16] and distinguish it from the 
current LLMV and GCC variants, we decided to use the 
name “Loop Flattening of Data-Dependent Nested Loops” 
in our work. 

VII. CONCLUSION 
Experimental data presented in Fig. 7 shows that applying 

the loop nest reduction transformation to the benchmarking 
application increases its speed up to 24x times. However, 
the transformation results in significant slowdowns when 
the probability of an early exit from the internal loop is 
small, or when the algorithm’s external loop instructions 
take more time than those in the internal loop. Thus, the 
transformation should be applied sparingly: careful analysis 
of real-world workloads should justify its usage in each 
particular case. 

These observations give a clear direction for further re-
search: the transformation should be applied automatically 
by the compiler as a part of the program optimization rou-
tine, driven by profiling information and static code 
analysis. 

Experimenting with this transformation on real-world ap-
plications proved to be difficult because of the “chicken-
and-egg” problem: the algorithms that had already been 
successfully ported to GPUs will not benefit from it, but 
algorithms that could benefit from it had not been ported to 
GPUs yet, because these do not function well there. Overall, 
loop nest reduction transformation can provide a way to 
adapt algorithms that rely on intricate branching patterns to 
GPU platforms. 
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