
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no.9, 2019

Abstract — Modern Graphics Processing Units (GPUs) be-

long to the “Single Instruction Multiple Data” (SIMD) compu-
tational architecture class. Due to inefficient execution of di-
vergent branches, SIMD devices can lose performance on nest-
ed loops with data-dependent exit conditions. A specialized
compile-time Control Flow Graph (CFG) transformation rou-
tine can solve this problem. The routine reduces loop nest level
by merging the inner loop with the outer loop. The trans-
formed program remains logically equivalent to the original
one, while its branching pattern becomes better suited for exe-
cution on a SIMD device. The routine is implemented as a
Low-Level Virtual Machine (LLVM) Transformation Pass.
Depending on the dataset and nested loops parameters, the
transformation reduces the worst-case running time of a spe-
cialized GPU benchmarking application up to 24 times.

Keywords— Branch Divergence, Control Flow Analysis,
LLVM, Nested Loops, SIMD.

I. INTRODUCTION

SIMD devices, such as GPUs, suffer significant perfor-
mance loss when running an algorithm that relies on unpre-
dictable conditional jumps. This inefficiency stems from the
fact that SIMD devices serialize execution of divergent
branches [OPT2008]. However, the divergence problem can
be solved for some types of branching constructs by apply-
ing a corresponding code transformation routine. In this
paper, we build such a routine for the case of nested loops
with data-dependent number of iterations. We develop a
proof-of-concept version of the transformation for the
LLVM compiler platform and apply it to a benchmark utili-
ty designed to simulate nested loops constructs that can be
found in real-life applications.

In the rest of the Section I we describe the SIMD branch-
ing model and the problem of nested loops in greater detail.
In Section II, we describe some concepts used in this work,
such as control flow graph and natural loop. Section III
introduces the actual transformation routine. Section IV
describes the proof-of-concept LLVM Transformation Pass
implementing the routine. Section V contains an experi-
mental evaluation of the transformation’s effect on a
benchmarking application. Section VI contains information
on related works. Section VII concludes the paper with the
discussion of the results.

Manuscript received 27.05.2019.
V. G. Bulavintsev is with the Technical University of Delft, Mekelweg 5,
2628 CD Delft, the Netherlands (e-mail: v.g.bulavintsev@gmail.com).

A. SIMD architecture and conditional branch execution
problem in GPUs
SIMD acronym stands for Single Instruction Multiple Data,
a class of parallel computers [2]. SIMD machines are often
described as multiprocessors, in contrast to traditional pro-
cessors that belong to the Single Instruction Single Data
(SISD) class. In a SIMD machine, a single Control Unit
(CU) dispatches the same single instruction to multiple Pro-
cessing Units (PU) belonging to the same working group,
called the SIMD group. Working in a «lockstep» mode with
other PUs of the group, each PU applies the same instruc-
tion to a different element of a dataset (Fig. 1). This parallel
execution method makes SIMD architecture very efficient at
vector processing.

Fig. 1. SIMD and SISD architectures.

Unfortunately, SIMD design has a drawback that becomes
evident during the execution of conditional expressions:
different branches of the program have to run different
instructions, but only a single instruction type can be issued
by CU at once to all PUs of the SIMD group.

Fig. 2. Serialization of branch execution on SIMD platforms.

Modern GPUs handle this situation by serializing the
execution of divergent branches (Fig. 2). According to the

Flattening of Data-Dependent Nested Loops for
Compile-Time Optimization of GPU Programs

V. G. Bulavintsev

7

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no.9, 2019

branching condition, a group of computational threads exe-
cuted within a single SIMD group (a warp in NVIDIA’s
terminology [3]) is split into two subgroups L and R. The
threads in group L run (their PUs are active) while the
threads in group R wait in the «frozen» state (their PUs are
idle). When group L reaches a reconvergence point in the
program, it stops and waits in the «frozen» state for group R
to catch up. After group R reaches the same reconvergence
point, the execution continues as usual. In the case of a sin-
gle-level conditional branch, up to ½ of PUs can stay idle at
any moment, waiting for other threads to reach a common
point in program execution.

Unfortunately, nested conditional branches (e.g., nested
“if-else” statements or nested “while” loops) lead to nested
serialization, thread subgroups splitting to sub-subgroups,
until a subgroup consists of a single thread, corresponding to
a single active PU (Fig. 2). This effect can decrease GPU
performance up to n times, where n is the warp size (32 or
64 in modern GPUs [3], [4]).

B. The problem of nested loops
Consider a GPU program that contains two “while” loops

A and B, such that loop B is nested inside loop A. Loop A
processes a list of elements of type a. Loop B processes
elements of type b. Processing one element of type a re-
quires sequential processing of several elements of type b
(e.g., each a element is a container that contains some b
elements). If the amount of b elements is different for each a
element processed in a SIMD group, the loss of performance
from branching is inevitable. Intuitively, this happens be-
cause the threads that had already processed all b elements
in their current a element and thus had become ready to
leave the B loop (and get the next a element) must wait for
the other threads of their SIMD group to catch up. Only then
the group can step into the next iteration of loop A and get
new a elements for processing. Combining A and B into a
single loop prevents this effect by forcing a thread to check
if it is ready to process the next a element every time it fin-
ishes processing any b element [5].

II. PRELIMINARIES

A. Control flow graph
Control Flow Graph (CFG) represents all paths of execu-

tion of a program [6]. It gives a natural way to study and
manipulate the effects of control statements and conditional
jumps.

CFG consists of Basic Blocks (BBs), connected by di-
rected edges that represent control flow (execution se-
quence) of the program. A basic block represents a straight-
line sequence of instructions with only one entry point (the
start of the block) and only one exit point (the end of the
block). Execution of instructions in a basic block always
starts at its first instruction and ends with its last instruction,
which is always a (conditional or unconditional) jump in-
struction. In a CFG, the entry and exit blocks represent the
beginning and the end of the control flow.

In a flow graph, node d is said to dominate node n if eve-
ry path from entry to n goes through d. An edge from node
N (latch) to node H (header) is said to be a back edge if H

dominates N. If all nodes are still reachable from entry node
after removal of all back edges, the CFG is said to be reduc-
ible. Structured programming always produces reducible
CFGs. Any irreducible CFG can be transformed into its
reducible equivalent using node splitting. All loops of a
reducible CFG are natural loops (Fig. 3).

B. Natural loops
A natural loop L of a back edge (𝑁 → 𝐻) is the smallest

set of nodes satisfying the following properties:
1. 𝐻,𝑁 ∈ 𝐿;
2. for any two nodes 𝑛,𝑛′ ∈ 𝐿, there exists a path from 𝑛

to 𝑛′;
3. for any node 𝑛 ∈ 𝐿, the set of its predecessors

𝑃𝑟𝑒𝑑(𝑛) ⊆ 𝑃𝑟𝑒𝑑(𝐻).
Informally, a natural loop is a cycle in a graph that is

formed by a single back edge, and that has no jumps into the
middle of its body from other parts of the program. Control
flow enters a natural loop only through its header and leaves
it through one or more blocks with successors outside the
loop (exit blocks).

Fig. 3. An example of a
natural loop.

Fig. 4. Disjoint and nested natural
loops.

Natural loops of a reducible graph form a tree hierarchy,
where any pair of natural loops is either disjoint or nested
(Fig. 4). For the rest of this paper, we will discuss only re-
ducible graphs and natural loops.

III. LOOP NEST REDUCTION

A. Transformation procedure
We presume the graph G to be reducible and loops A and

B to be nested natural loops (B is nested in A). For simplici-
ty, we consider loop B as a single basic block, holding the
roles of the header, the latch, and the exit blocks simultane-
ously. Loop A’s header block 𝐴𝑤ℎ is non-empty (e.g., it
contains some “payload” instructions). It precedes loop B.
Loop A’s exit/latch block 𝐴𝑒 follows loop B immediately
(Fig. 5a). The variables controlling A and B’s exit conditions
are named accordingly: a and b.

The basic idea of the loop nest reduction transformation is
to use A’s back edge to “emulate” B’s back edge, and then
isolate instructions exclusive to A by putting them under
conditional bypass (the latter procedure is known as
predication). The procedure starts with the original CFG

8

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no.9, 2019

(Fig. 5a) and goes as follows:
1. Split 𝐴ℎ𝑤 into the empty header block 𝐴ℎ and the

“work” block 𝐴𝑤 (Fig. 5b);
2. Put a new empty latch block 𝐴𝑙 on A’s back edge, thus

removing the latch role from 𝐴𝑒 (Fig. 5b);
3. Redirect B’s back edge to point to 𝐴𝑙 (Fig. 5c);
4. Create pre-header 𝐴𝑝 with “store false into variable b”

instruction (Fig. 5c);
5. Add conditional jump instruction to 𝐴ℎ, such that if b is

false, 𝐴𝑤 will be executed next, and if b is true, execu-
tion will jump straight to the B loop header (Fig. 5c).
The resulting CFG is shown in Fig. 5c.

We do not describe here the transformation procedures
for every possible CFG configuration that include nested
loops since these can be trivially derived from the one de-
scribed above. For example, if the outer loop contains sev-
eral independent inner loops instead of one, steps 3-5 can be
applied to each of these inner loops individually. In general,
it is possible to apply the procedure iteratively to reduce the
depth of the natural loops tree to any desired level.

Fig. 5. Nested loops fusion transformation.

B. The correctness of the transformation
Let us compare the execution of the original and trans-

formed CFGs. In original CFG we go straight to the
execution of A’s “payload” instructions inside 𝐴ℎ𝑤 block. In
the transformed CFG, we instead first initialize b variable to
false at 𝐴𝑝 and proceed to check its value at 𝐴ℎ. This check
leads to the execution of 𝐴𝑤 where A’s “payload” is done, as
in original CFG.

Then we proceed into loop 𝐵’s body basic block and
compute 𝑏 condition value. Assume the condition 𝑏 is true
and we need to take another iteration of the loop 𝐵. In the
original CFG, we immediately jump back to the beginning
of loop 𝐵’s basic block. In the transformed CFG we jump to
loop 𝐴’s new latch block 𝐴𝑙 and immediately make an un-
conditional jump to 𝐴ℎ. Next, because b is true, we take the
conditional jump into loop 𝐵’s basic block, as if executing
the original CFG. Notice that we haven’t executed “pay-

load” instructions specific to loop 𝐴, because they were
moved to 𝐴𝑤, and we “jumped over it” via conditional
𝐴ℎ → 𝐵 edge. Thus, the execution of 𝐴𝑤 is impossible when
𝑏 is true.

When 𝑏 becomes false, the execution process must leave
loop 𝐵 and take on a new iteration of loop 𝐴. In both vari-
ants of CFG after 𝑏 becomes false, the conditional jump
instruction at the end of loop 𝐵’s basic block leads to 𝐴𝑒.
There, we execute instructions specific to loop 𝐴, evaluate
condition 𝑎 (in this example, to true) and take conditional
jump directly to 𝐴ℎ𝑤 (in case of original CFG) or to 𝐴𝑙 and
then to 𝐴ℎ (in the transformed one). Original CFG then exe-
cutes A’s “payload” instructions contained in 𝐴ℎ𝑤. Trans-
formed CFG checks b’s value at 𝐴ℎ block, sees it is false
and jumps to 𝐴𝑤 where it executes A’s “payload” instruc-
tions too.

The case when 𝑎 and 𝑏 are both false, resulting in an es-
cape from the loop 𝐴, can be traced in a similar manner. It is
easy to see that, in regards to “payload” processing, both
CFGs execution results are equivalent, though their execu-
tion paths differ. The semantics of the transformed CFG is
always equivalent to the semantics of the original CFG. The
instructions that were added in the process of the transfor-
mation do not interfere in any way with the original data and
stay local to the loops’ bounds.

The transformed CFG’s pattern of making jumps to 𝐴ℎ
after each execution of B adds some overhead. However, for
SIMD architectures this pays off because it makes all
threads of a SIMD group regularly “check for new work”
for cycle B by speculatively executing cycle A’s “payload”
instructions in 𝐴𝑤.

C. Estimation of potential benefit
Sometimes, the overhead of speculative checks can ex-

ceed the potential benefits of the higher usage of PUs. To
describe the conditions that make the transformation viable,
let us first introduce the following notation:
𝑇𝑎 – the time to execute 𝐴𝑤 basic block (the external cy-

cle’s “payload” instructions);
𝑇𝑏 – the time to execute B’s instructions;
𝑁 – the total number of threads/PUs in a SIMD group

(size of a warp in NVIDIA’s terms);
𝑛 – the number of idle threads in a SIMD group;
(𝑁 − 𝑛)𝑇𝑎 - the “cost” of going to the outer loop to get

new work for the idle threads;
𝑛𝑇𝑏 – the potential payoff from getting new work for the

idle threads (i.e., how much work they would do at the next
iteration of B if we get new work for them).

At the end of each iteration of the internal loop, it makes
sense to go for the new work if the potential gain in the
number of payload elements processed at the next cycle
outweighs the costs: 𝑛𝑇𝑏 − (𝑁 − 𝑛)𝑇𝑎 > 0. Or, put another
way:

𝑛
𝑁

>
𝑇𝑎

𝑇𝑎 + 𝑇𝑏
; (1)

Formula (1) can be interpreted as follows: the “heavier”
the instructions in the inner cycle relative to the instructions
exclusive to the outer cycle, and the more threads would on

9

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no.9, 2019

average stay idle in the untransformed program, the more
speed up the transformation will provide. Note that the
potential benefit of the transformation is limited by warp
size N because of 𝑛 ≤ 𝑁.

IV. IMPLEMENTATION

A. Low-Level Virtual Machine framework
Low-Level Virtual Machine (LLVM) [7], [8] framework

provides a set of compilers, translators, and other tools
working with the LLVM Intermediate Representation lan-
guage (IR) [7]. IR is a strongly typed low-level language for
a virtual machine with an infinite number of registers, ex-
pressed in Single State Assignment (SSA) form [9]. LLVM
is comprised of “front-ends” that enable compilation from
high-level programming languages into IR, and “back-ends”
that translate IR into binary machine code for different
hardware platforms. In between these stages, a program in
the IR form may undergo optimizations implemented within
a framework of so-called “transformation passes.”

B. Transformation pass
We developed a proof-of-concept LLVM IR transfor-

mation pass that implements the loop nest reduction proce-
dure described above. We also developed a specific bench-
mark (see the next subsection) that emulates unpredictable
nested work queues. The source code for both transfor-
mation pass and test application can be found at [10]. We
use NVIDIA CUDA [3] as a GPGPU language of choice in
our test application, but the transformation pass is not lim-
ited to CUDA or any other hardware platform since it works
directly on IR. It can be applied without any changes to any
program translated to IR form.

Fig. 6. CUDA program compilation and transformation process
with gpucc (clang) compiler and LLVM tools.

C. Applying the transformation
The program should be first translated to the IR form. We

achieve this by using the open-source GPGPU compiler
“gpucc” [11]. We invoke it via the Clang [12] compiler
infrastructure by hand and stop the compilation process after
the GPU, and host parts of the program are translated to IR.
Next, we apply our loop nest reduction pass to the GPU part
of the IR code with the “opt” utility [7]. Then compilation is
continued as usual (Fig. 6).

Disassembly of the NVPTX1 binary [3], [11] confirms
that only one back edge remains in the CFG after applying
the transformation.

V. EXPERIMENTAL EVALUATION

A. Benchmarking application description
Formula (1) suggests that the transformation’s efficiency

for a given algorithm depends on two factors:
a) the ratio of “weights” of the inner loop’s instruc-

tion sequence compared to the outer loop;
b) the average relative number of threads leaving the

inner loop early.
(a) mostly depends on the properties of the algorithm itself,
while (b) depends on the properties of a typical dataset pro-
cessed by the algorithm. To investigate the effects of these
factors on the viability of the loop nest reduction, we devel-
oped a specialized test application that simulates different
ratios of loop “weights” and threads’ early exits.

The benchmark application emulates the behavior of a
two-level work queue that can be found, for example, in
some search algorithms [5], [13], [14]. The GPU part of the
program consists of a pair of nested loops: outer loop A and
inner loop B, similar to the example given in section II.A.

Loop B’s body consists of a dummy computational rou-
tine that stands for “useful work” and a command to in-
crease the “useful processing” counter by 1. Loop B stops
when at least one of the two following conditions becomes
true:

1. the loop has been repeated for a fixed number of
times;

2. the “early exit” condition has been met.
The “early exit” sets up a situation when the thread has no
work at the inner loop and must get to the outer loop to ob-
tain new data.

Loop A runs for a fixed number of iterations. At the be-
ginning of the first iteration of loop A, a simple pseudo-
random number generator determines which particular
threads will meet the “early exit” condition. The total num-
ber of threads which will meet the “early exit” condition at
any iteration of loop A is controlled by parameter k. This
scheme allows for unbiased distribution of “early exits”
inside the SIMD group. Also, it simulates the worst possible
case for SIMD performance, as the threads receive the “ear-
ly exit” signal immediately, thus for

B. Experimental setup, performance measurement meth-
ods
Experiments were conducted on Ubuntu Linux 18.04 with

1 Nvidia Parallel Thread Execution virtual machine and instruction set
architecture.

10

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no.9, 2019

LLVM-9.0 and CUDA SDK 10.1. Program optimization
was enabled with “-O3” for both GPU and CPU code.
CUDA assembler was forced to generate Compute Capabil-
ity 7.0 code [3]. GPU part of the benchmark application was
run on RTX 2060 NVIDIA GPU.

Three variants of the original benchmark application were
produced, with different ratios of computational instructions
between the external and the internal loops (“A/B ratios”
equal to 10/1, 1/1, 1/10, 1/100). Next, the transformation
procedure was applied to produce the corresponding trans-
formed benchmark applications. The execution times of
each of these original and transformed applications were
then measured for all 32 possible values of parameter
𝑘, 0 ≤ 𝑘 ≤ 31.

C. Experimental results
In the case of the original application, when 𝑘 = 0, SIMD

device lose no performance from branch divergence effects,
because no “early exit” conditions are generated. When
𝑘 = 31 (32 is the size of a SIMD group of NVIDIA GPUS),
“early exits” force all but one thread to stay idle. Overall,
parameter 𝑘 allows us to simulate processing of a dataset
which has any desired probability of a thread meeting an
“early exit” event.

Fig. 7. Performance of the benchmark application variants after
applying loop flattening transformation. Performance is given

relative to corresponding non-transformed variant. Different data
lines show benchmark variants with different A/B (outer loop /

internal loop) “computational costs” ratios.

Fig. 7 shows the performance of the benchmark applica-
tion variants for different values of 𝑘. Performance is shown
relative to that of the “original” (non-transformed) applica-
tion with 𝑘 = 0.

One can immediately see that the execution time for the
original application does not depend on 𝑘 and always stays
on the same level. This is expected, because even if all the
threads except a single one would meet the “early exit” con-
dition, the SIMD architecture will not let any threads get to
the outer loop. Contrarily, transformed applications will
always check for the new work, which results in shorter
execution times for lower values of k. This speculative
work-checking strategy introduces an overhead that makes
transformed applications slower than the original for small
to medium values of 𝑘, for higher 𝐴/𝐵 ratios. Overall, the

transformation provides good speedups for applications with
low 𝐴/𝐵 ratios, if the value the of 𝑘 is high i.e., the dataset
has a high probability of generating an “early exit” event.
These observations confirm the results of the analysis
conducted in Section II.D.

At 𝑘 = 31, the original application loses 97% of perfor-
mance. However, the transformed versions lose only 24%-
56% of performance, depending on their A/B ratio. Thus,
transformed applications perform up to 24x times faster than
the original at this dataset. Due to the overhead of the specu-
lative checks, for A/B ratio of 10/1, the transformation starts
to pay off only from 𝑘 = 14. That roughly corresponds to
50% probability that a thread will leave the loop B early.
Starting from A/B ratio of 1/10, the overhead has no effect,
and for every k, the transformed application runs faster than
the original one. Curiously, for 0 ≤ 𝑘 ≤ 3 the transformed
application shows the performance of up to 102%. This can
be explained by transformation making the CFG more suita-
ble for optimization at the later stages of the compilation
process.

VI. RELATED WORKS
The general method of converting control dependence to

data dependence was described in 1983 by John R. Allen et
al. [15]. “Loop flattening” term was coined in 1992 by K.
Kennedy in [16], where he described the basic idea of re-
ducing a pair of nested loops into a single loop, although in
a Fortran-specific way. In 1995, the technique was studied,
still in Fortran context, dissertation [17], and the context of
sparse matrix-vector multiplication in [18]. The communi-
ty’s interest in optimizing execution of code on SIMD archi-
tectures resurged with advances in GPGPUs programming
features [1].

During the last decade, the scientific effort was focused
on solving the SIMD branching problem with both hardware
and software solutions. The hardware-based approach is
exemplified by dynamic thread regrouping [19], advanced
methods of mapping control flow to SIMD processors with-
in a bounded region of the program [20], dual-path execu-
tion model [21] and lane permutation [22], execution cycle
compression [23], hardware-accelerate flattened loops exe-
cution [24]. The software-based solutions for the divergence
problem included merging similar execution paths via the
genetic sequencing algorithm [25], building a divergence
metrics [26], analyzing SIMD group’s size effect on the
problem [27] and linearization of control flow in SIMD
programs [28]-[30]. Work [31] uses predication to enable
loop unrolling for data-dependent. Work [32] by T.D. Han
and T. S. Abdelrahman is of particular interest because it
analyzes the same loop flattening transformation as we do.
Our work is similar to [32] in regards to implementing the
transformation described in [16] within the LLVM frame-
work. In [32], transformation is evaluated experimentally
using a synthetic benchmark that simulates a distribution of
“early exit” events and on some real-life applications. How-
ever, [32]’s authors do not publish the source code for the
transformation. Our work provides the source code, focuses
on the synthetic benchmark that simulates the worst case
performance, and establishes an analytical expression for

11

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no.9, 2019

assessing the transformation feasibility (Section III.C).

It is important to note that there is some confusion in the
literature in regards to naming the transformation presented
in [16]. The authors of [32] name their transformation
“Loop Merging” instead of “Loop Flattening” and do not
cite [16]. “Loop Flattening” transformation that is a very
limited variant of the transformation described in [16] is
described in [33]. It targets optimization of simple nested
loops with known iteration counts (i.e., arrays processing)
and is included in both LLVM and GCC [34]. To honor the
transformation name used in [16] and distinguish it from the
current LLMV and GCC variants, we decided to use the
name “Loop Flattening of Data-Dependent Nested Loops”
in our work.

VII. CONCLUSION
Experimental data presented in Fig. 7 shows that applying

the loop nest reduction transformation to the benchmarking
application increases its speed up to 24x times. However,
the transformation results in significant slowdowns when
the probability of an early exit from the internal loop is
small, or when the algorithm’s external loop instructions
take more time than those in the internal loop. Thus, the
transformation should be applied sparingly: careful analysis
of real-world workloads should justify its usage in each
particular case.

These observations give a clear direction for further re-
search: the transformation should be applied automatically
by the compiler as a part of the program optimization rou-
tine, driven by profiling information and static code
analysis.

Experimenting with this transformation on real-world ap-
plications proved to be difficult because of the “chicken-
and-egg” problem: the algorithms that had already been
successfully ported to GPUs will not benefit from it, but
algorithms that could benefit from it had not been ported to
GPUs yet, because these do not function well there. Overall,
loop nest reduction transformation can provide a way to
adapt algorithms that rely on intricate branching patterns to
GPU platforms.

REFERENCES
[1] S. Ryoo et al., “Optimization principles and application performance

evaluation of a multithreaded GPU using CUDA,” Proc. 13th ACM
SIGPLAN Symp. Principles and practice of parallel programming,
pp. 73-82, 2008.

[2] M. J. Flynn, “Some Computer Organizations and Their Effective-
ness,” IEEE Trans. on Computers, vol. C-21, pp. 948–960, 1972.

[3] CUDA Toolkit Documentation v10.1, Nvidia corp., Santa Clara, CA,
2019.

[4] OpenCL User Guide v3.0, AMD corp.: Santa Clara, CA, 2015.
[5] V. G. Bulavintsev, “An evaluation of CPU vs. GPU performance of

some combinatorial algorithms for cryptoanalysis,” CMSE Bulletin of
the South Ural State University, vol. 4(3), pp. 67–84, 2015.

[6] F. E. Allen, “Control flow analysis,” ACM SIGPLAN Notices, vol. 5,
no. 7, pp. 1–19, Jul. 1970.

[7] C. Lattner, V. Adve, “LLVM: A compilation framework for lifelong
program analysis and transformation,” Proc. 2004 Int. Symposium on
Code Generation and Optimization, Washington DC, IEEE Computer
Society, pp. 75-86, 2004.

[8] The LLVM Compiler Infrastructure Project, 2019, http://llvm.org.
[9] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, F. K. Zadeck,

“Efficiently computing static single assignment form and the control

dependence graph,” ACM Trans. Programming Languages and Sys-
tems, TOPLAS 13.4, pp. 451–490, 1991.

[10] V. G. Bulavintsev, NestedLoopsFusion GitHub project, 2019,
https://github.com/ichorid/nestedloopsfusion.

[11] J. Wu, et al., “gpucc: an open-source GPGPU compiler”, Proc. 2016
Int. Symp. Code Generation and Optimization, New York, ACM, pp.
105–116, 2016.

[12] Clang: a C language family frontend for LLVM, 2019,
http://clang.llvm.org.

[13] V. G. Bulavintsev, A. A. Semenov, “GPU-based implementation of
DPLL algorithm with limited non-chronological backtracking”, Pri-
kladnaya Diskretnaya Matematika, Suppl., vol. 6, pp. 111-112, 2013.

[14] O. Zaikin, “Application of parallel SAT solving algorithms for crypt-
analysis of the shrinking and self-shrinking keystream generators,”
International Journal of Open Information Technologies (INJOIT),
vol.6, no. 10, pp. 29-33, 2018.

[15] J.Allen, K. Kennedy, C. Porterfiel and J. Warren, “Conversion of
control dependence to data dependence,” Proc. 10th ACM SIGACT-
SIGPLAN Symp. Principles programming languages, pp. 177-189,
1983.

[16] K. Kennedy, “Relaxing SIMD control flow constraints using loop
transformations,” Proc. ACM SIGPLAN 1992 conf. Programming
language design and implementation, vol. 27, no. 7, pp. 188-199,
1992.

[17] R.Von Hanxleden, “Compiler support for machine-independent
parallelization of irregular problems,” Doctoral diss., Rice Univ.,
1995.

[18] A. Ghuloum and A. Fisher, “Flattening and parallelizing irregular,
recurrent loop nests,” ACM SIGPLAN Notices, vol. 30, no. 8, pp. 58-
67, 1995.

[19] W. Fung, I. Sham, G. Yuan, and T. Aamodt, “Dynamic warp for-
mation and scheduling for efficient GPU control flow,” Proc. 40th
Annual IEEE/ACM Int. Symp. Microarchitecture (MICRO), pp. 407-
420, 2007.

[20] G. Diamos et al., “SIMD re-convergence at thread frontiers,” Proc.
44th Annual IEEE/ACM Int. Symp. Microarchitecture (MICRO), pp.
477-488, 2011.

[21] M. Rhu and M. Erez, “The dual-path execution model for efficient
GPU control flow,” Proc. 19th Int. Symp. High Performance Com-
puter Architecture (HPCA), pp. 591-602, 2013.

[22] M. Rhu and M. Erez, “Maximizing SIMD resource utilization in
GPGPUs with SIMD lane permutation,” ACM SIGARCH Computer
Architecture News, vol. 41, no. 3, pp. 356-367, 2013.

[23] A. Vaidya, A. Shayesteh, D. Woo, R. Saharoy and M. Azimi, “SIMD
divergence optimization through intra-warp compaction,” ACM
SIGARCH Computer Architecture News, vol. 41, no. 3, pp. 368-379,
2013.

[24] J. Lee, S. Seo, H. Lee and H. Sim, “Flattening-based mapping of
imperfect loop nests for CGRAs,” Proc. 2014 Int. Conf. Hard-
ware/Software Codesign and System Synthesis, p. 9, 2014

[25] B. Coutinho, D. Sampaio, F. Pereira and W. Meira Jr., “Divergence
analysis and optimizations,” 2011 Int. Conf. Parallel Architectures
and Compilation Techniques, IEEE, pp. 320-329, 2011.

[26] Z. Cui, Y. Liang, K. Rupnow and D. Chen, “An accurate GPU per-
formance model for effective control flow divergence optimization,”
26th International Parallel and Distributed Processing Symposium,
IEEE, pp. 83-94, 2012.

[27] T. Schaub, S. Moll, R. Karrenberg and S. Hack, “The impact of the
SIMD width on control-flow and memory divergence,” ACM Trans.
Architecture and Code Optimization (TACO), vol. 11, no. 4, p. 54,
2015.

[28] H. Wu, G. Diamos, S. Li and S. Yalamanchili, "Characterization and
transformation of unstructured control flow in gpu applications,” 1st
International Workshop on Characterizing Applications for Hetero-
geneous Exascale Systems, 2011.

[29] J. Anantpur and R. Govindarajan, “Taming control divergence in
GPUs through control flow linearization,” Int. Conf. Compiler Con-
struction, Springer, Berlin, Heidelberg, pp. 133-153, 2014.

[30] T. Han and T. Abdelrahman, “Reducing branch divergence in GPU
programs,” Proc. 4th Workshop on General Purpose Processing on
Graphics Processing Units, ACM, p. 3, 2011.

[31] A. Carminati, R. Starke and R. de Oliveira, “Combining loop un-
rolling strategies and code predication to reduce the worst-case execu-
tion time of real-time software,” Applied computing and informatics,
vol. 13, no. 2, pp. 184-193, 2017.

[32] T. Han and T. Abdelrahman, “Reducing divergence in GPGPU pro-
grams with loop merging,” Proc. 6th Workshop General Purpose

12

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no.9, 2019

Processor Using Graphics Processing Units, ACM, pp. 12-23, ACM,
2013.

[33] S. Pop, R. Yazdani and Q. Neill, “Improving GCC’s auto-
vectorization with if-conversion and loop flattening for AMD’s Bull-
dozer processors,” GCC Developers’ Summit, p. 89, 2010

[34] GNU Compiler Collection, 2019, http://gcc.gnu.org.

13

	I. INTRODUCTION
	A. SIMD architecture and conditional branch execution problem in GPUs
	B. The problem of nested loops

	II. Preliminaries
	A. Control flow graph
	B. Natural loops

	III. Loop nest reduction
	A. Transformation procedure
	B. The correctness of the transformation
	C. Estimation of potential benefit

	IV. Implementation
	A. Low-Level Virtual Machine framework
	B. Transformation pass
	C. Applying the transformation

	V. Experimental evaluation
	A. Benchmarking application description
	B. Experimental setup, performance measurement methods
	C. Experimental results

	VI. Related works
	VII. Conclusion
	References

