
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no.7, 2019

Abstract - This work discusses integration of the DBpedia

dataset with NVD (National Vulnerability Database) in order to
bring some practical results to knowledge management in the
field of software security.

We have automatically mapped entities (software products
and vendors), obtained from CPE (Common Platform
Enumeration), with the corresponding elements of DBpedia,
through the DBpedia Spotlight service. We have manually
reviewed the annotation results and linked them into a semantic
model. As NVD uses the CPE entities as a naming scheme for
software products, the semantic model allows to identify NVD
records, related to software products, mentioned in DBpedia;
and can be used to extend DBpedia by vulnerabilities related
data, and build advanced security models of software products.
All the experimental models in the RDF format and Java-based
software have freely been published by the GitHub service.

The mapping of NVD with DBpedia based on CPE and
DBpedia Spotlight does not seem to be easy. The automatic
annotation has suffered from getting general results, instead of
specific ones. Also, there is an issue with possibility to choose
the most general term in a given sequence. And the last
challenge relates to possible incompleteness and inconsistency
of the Linked Open Data. It needs to improve annotation
techniques in order to involve fully automatic process there.

Keywords — software security, semantic annotation,
knowledge management, DBpedia, DBpedia Spotlight, NVD,
CPE, OWL API.

I. INTRODUCTION
The idea of a Semantic Web is to extend the traditional

Web of documents. In the new information space there are
not only documents and links between them, but any entities
(e.g. persons, organisations, countries, different kinds of
products) and relations between them [1]. The Semantic
Web is based on LOD (Linked Open Data). The LOD
conception refers to best practices, guides, formats and
technologies, that allow free publication and interlinking
structured data on the Web. The LOD reality is formed from
different public knowledge sources (datasets), available
online through the Web-based services and as structured
files. The most famous of them are Wikidata, DBpedia,
YAGO, etc. (one can find the whole picture at https://lod-
cloud.net).

We can consider DBpedia (https://wiki.dbpedia.org/), a

Manuscript received April 19, 2019.
Andrei Brazhuk is with the Yanka Kupala State University of Grodno,

Grodno, Republic of Belarus (e-mail: brazhuk@grsu.by).

crowd-sourced community project, as a most significant
component of the LOD cloud and even as a key factor of the
LOD conception success. The project has a powerful
extraction framework and means, able to obtain the linked
data from Wikipedia and its subprojects (mapping-based and
raw infobox extraction, feature extraction, statistical
extraction, NLP extraction). Also, it contains a lot of links to
external entities, that gives it a role of hub for other LOD
components [1].

The LOD cloud contains information about different
aspects of human activity, in particular about software
security, the last is considered as the main topic of this work.
However, using the LOD data in the field of software
security is not very common now. The most valuable sources
of knowledge there can be treated as traditional sources, i.e.
various directories of vulnerabilities, threats, and attacks,
which aggregate different pieces of experience (positive and
negative ones). It can be argued there are two groups of
knowledge sources: primary sources, which contain
information about security issues of end products; and
secondary sources, which generalize the primary sources by
the analysis and classification procedures in order to
recognize typical challenges and form security guides and
best practices. As primary sources can be considered CVE
(Common Vulnerabilities and Exposures) or NVD (National
Vulnerability Database), as dictionaries of publicly known
vulnerabilities in software products; and CPE (Common
Platform Enumeration) as a naming scheme for identification
of software products, mentioned in NVD. CWE (Common
Weakness Enumeration) and CAPEC (Common Attack
Pattern Enumeration and Classification), as means for
classification of cybersecurity weaknesses and attacks, might
be considered as secondary sources.

The main advantage of the LOD approach to knowledge
management is an opportunity to add pieces of intelligence
to data processing. Although traditional data sources use
well-structured data formats (XML, JSON), they do not have
such capacity. Modern knowledge management systems are
based on a semantic approach, that uses methods and
technologies oriented to semantics, i.e. meaning of data.
Usually a knowledge management system has an ontology
(set of ontologies) as a core. Ontology-based systems use
descriptive logics (a subset of first-order logics) as a
background. The descriptive logic is able to depict concepts
of a subject-specific area and relations between them in a
very formal way. Reasoning procedures with relatively low
computational complexity (under certain conditions) and

Building annotated semantic model of software
products towards integration of DBpedia

with NVD vulnerability dataset
 Andrei Brazhuk

35

https://lod-cloud.net/
https://lod-cloud.net/
https://wiki.dbpedia.org/

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no.7, 2019

advanced rule-based processing can be added to that kind of
systems. Existing LOD datasets, based on the RDF
(Resource Description Framework) models can be combined
with the OWL (Web Ontology Language) ontologies in
order to implement advanced knowledge management
systems.

This work discusses integration of DBpedia with NVD
based on CPE in order to bring some practical results to
knowledge management in the field of software security. We
have automatically mapped (annotated) entities (software
products and vendors), obtained from CPE, with the
corresponding elements of DBpedia, through the DBpedia
Spotlight service. We have manually reviewed the
annotation results and linked them into a semantic model,
aimed to connect the DBpedia and NVD datasets. The
semantic model allows to obtain data from NVD, e.g. by
SPARQL requests, that contain DBpedia entities. That might
be useful to extend DBpedia by data, related to
vulnerabilities, and to build advanced security models of
software products (or groups of products).

Below a review of related researches is given, a structure
of used semantic modes is depicted, a short description of an
implementation is given, and main issues of automatic
annotation named entities with DBpedia Spotlight are
discussed.

Given models and software have freely been published by
GitHub service (see link below).

II. RELATED WORK
Researches, related to creation new security semantic

models (from scratch or based on traditional data sources),
are quite perspective nowadays.

The work [2] has considered design of ontology-based
data model as a part of network attack modelling for the
SIEM (Security information and event management)
systems. Proposed decisions are based on SCAP (Security
Content Automation Protocol). In particular, they have
described a common data model, which mentioned CAPEC
and CWE; also, they have depicted an ontology of
vulnerabilities, based on CVE.

A reference ontology for cybersecurity operational
information proposed in [3]. They described operation
domains, roles, databases and knowledge bases and relations
between them and mapped existing traditional data sources
to their ontology. Based on that work a mechanism of
linking, locating, and discovering various cybersecurity
information and its prototype have been proposed in [4].
They have claimed an ability of given means to discover and
hold structured cybersecurity information over the Internet,
i.e. to be a hub of web of cybersecurity.

The similar ideas have been brought by UCO (Unified
Cybersecurity Ontology) [5], but with some improvements.
The ontology has been based on the STIX (Structured
Threat Information eXpression) specification and
incorporates huge number of data and knowledge sources.
The best result there might be that UCO is the first
cybersecurity ontology, that has been mapped to the LOD
cloud (DBpedia, Yago). Earlier [6] it was described the idea
and framework for annotation cybersecurity terms and

vulnerability descriptions extracted from NVD and different
text sources with DBpedia Spotlight in order to create RDF-
based security knowledge sources, linked to the LOD cloud.
And the recent work [7] has described CCS (Cognitive
Cybersecurity System) with incredible opportunities to
ingest information from various textual sources and store
them in a knowledge graph in order to derive improved
actionable intelligence to different security application.

The work [8] has described an ontology based Software
Security Tagger Framework, aimed to extract security
concerns from textual information; that can yield several
benefits (bug management, capturing zero day attacks, etc.).

Those ideas and means have inspired us strongly, in
particular a challenge to unite the LOD cloud and traditional
security data sources. This challenge can be considered as
the very first step in a way to security data integration. That
might rich the LOD cloud with NVD, CWE, CAPEC data;
and it allows to use the LOD data by security systems, based
on the traditional data sources.

However, most of the existing researches are mainly
conceptual and declarative, their findings (e.g. used means,
data sets) are described superficially. And the most
disappointing thing is the practical results, that could be
reused for new researches, are unavailable or only partially
available (e.g. the UCO ontology has been published,
however we have not managed to find a link to its RDF
dataset).

So, that makes the idea of this work to bring some
reusable results to knowledge management in the field of
software security quite urgent.

III. DBPEDIA AND SEMANTIC ANNOTATION
Structured data of DBpedia available on the WEB as

static datasets, through a public SPARQL endpoint
(http://dbpedia.org/sparql) or in other ways (Faceted Web
Service, REST API, third-part endpoints, etc.). Since the
first public release in 2007 the DBpedia datasets had been
updated once per year. The last static multi-language update
(2016) included 13 billion RDF triples, and with the NIF
(NLP Interchange Format) data they got the overall count of
triplets to 23 billion. Also, live synchronization mechanism
has been added to the DBpedia project, that processes
updates in Wikipedia and the DBpedia ontology and allows
third parties to update their copies of DBpedia [9].

The DBpedia dataset has own ontology
(http://dbpedia.org/ontology or the “dbo” prefix). It is
maintained by a community and intended to unify different
data entities and provide effective data extraction from
Wikipedia. Properties of entities are hold in the “dbp”
namespace (http://dbpedia.org/property) and used primary
by the raw infobox extraction. And the last namespace,
called “dbr” (http://dbpedia/resource), is used to represent
the Wikipedia pages. If a Wikipedia article exists, it means
there is a DBpedia resource with a name, based on article’s
title [9].

Semantic annotation is the task of identifying all relevant
entities in a text document and linking them to a knowledge
base [10]. This problem is usually divided to two ones:
Semantic Annotation itself and Named Entity
Disambiguation/Recognition (NED/NER). Semantic
Annotation refers to a process of identification all entries

36

http://dbpedia.org/sparql
http://dbpedia.org/ontology
http://dbpedia.org/property
http://dbpedia/resource

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no.7, 2019

from a knowledge base (i.e. named entities, abstract
concepts, classes and properties) in a given text document;
while NED/NER focuses on recognition and annotation
named entities only.

There are a few freely available applications, aimed to
annotate a text document with entities from DBpedia. For
example, THD (Targeted Hypernym Discovery) [11] can
recognize entities in text, written in English, German, Dutch
languages, and enrich them with links from the Wikipedia,
DBpedia and YAGO knowledge bases. Also, Marvin [12], a
text annotator written in Java, can be used for annotation of
text using multiple sources (WordNet, MetaMap, DBpedia,
SKOS). Those projects (and others) might have some unique
features, that would be useful for the semantic annotation
task, but that requires additional research. As a dive into
NLP has been out of scope of the work, we have got the
conclusion, that the best option for us is to use DBpedia
Spotlight [13,14]. The main criterion for us has been the
opportunity to use it "out of box", so we have managed to
perform the necessary research procedures through its public
interface (https://api.dbpedia-spotlight.org) without
deployment a local service.

Fig. 1. API request to Dbpedia Spotlight

DBpedia Spotlight is an open source project, developing a

system for automatic annotation of text with the DBpedia
entities. The annotation process consists of four stages. On
the spotting stage they find phrases, that might indicate a
DBpedia resource. Candidate selection allows to map the
spotted phrases to several resources. The disambiguation
stage is responsible for the best choice from the several
candidates. Also, it is possible to customize results by
adding filters. The full annotation procedure seems to be
excess for the annotation of software products and vendors.
However, DBpedia Spotlight does not have an option to
distinguish semantic annotation and NER/NED [10]. They
[10] are working to improve that by involving the FICLONE
system, that combines named entity recognition system

(Stanford NER) with the results of DBpedia Spotlight.
However, that work is still in progress and there are not
public available tools yet.

Figure 1 shows an example of a Spotlight API request and
response. For responses the JSON format is used.

IV. CVE, NVD AND CPE
CVE (https://cve.mitre.org/) is a dictionary, that contains

identification numbers, descriptions and external references
for publicly known vulnerabilities in software products.
Common identifiers make it easy to share the information
across security databases and tools. CVE was launched by
MITRE (https://cve.mitre.org) as a community effort in
1999. Since 2012 the CVE records have been stored in the
CVRF (Common Vulnerability Reporting Framework)
format, that is a very simple and laconic way to represent
vulnerabilities as XML entities.

NVD (https://nvd.nist.gov) was launched by NIST
(https://www.nist.gov/) in 2005. NVD extends CVE with the
CVSS (Common Vulnerability Scoring System) metrics for
numerical scores for vulnerabilities, the CWE (Common
Weakness Enumeration) identifiers for their classification,
and the CPE entities in order to identify vulnerable products.
The NVD records are preferably saved in JSON (they are
going to stop using XML). CVE and NVD are synchronized,
total count of records is above one hundred thousand.

CPE (https://nvd.nist.gov/products/cpe) is a naming
scheme and dictionary for software products. It is distributed
in the XML format and regularly updated. CPE has some
issues related to its flat structure. Its organization allows
only to distinguish three classes of software (applications,
hardware-specific, and operating systems). Also, there is no
hierarchy of products, so adding a new version of a product
causes creation of a new record with duplication of product
and vendor data.

The last CPE 2.3 specification includes CPE naming
scheme and CPE dictionary format. The CPE naming
scheme is defined through well-formed names (WFN).
Listing 1 shows the WFN template and record example. The
part field represents a type of product (“a” - application, “h”
- hardware, “o” - operating system). The asterisk symbol (*)
means absence of a value.

Listing 1. WFN template and example
part:vendor:product:version:update:edition:lang:sw_ed:target_sw:t
arget_hw:other
o:canonical:ubuntu_linux:16.04:*:*:*:lts:*:*:*

One can get the current version of the CPE Dictionary as

a compressed XML file from project webpage
(https://nvd.nist.gov/products/cpe). Listing 2 shows an
example of CPE record. WFN is an attribute of the “cpe-
23:cpe23-item” tag, and full product name (often with
version and update information) is in the “title” tag.

Listing 2. Example of CPE record
<cpe-item name="cpe:/o:canonical:ubuntu_linux:16.04.4">
<title xml:lang="en-US">Canonical Ubuntu Linux 16.04.4</title>
<references>
<reference href="http://releases.ubuntu.com/">
Version

37

https://api.dbpedia-spotlight.org/
https://cve.mitre.org/
https://cve.mitre.org/
https://nvd.nist.gov/
https://www.nist.gov/
https://nvd.nist.gov/products/cpe
https://nvd.nist.gov/products/cpe

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no.7, 2019

</reference>
<reference href="http://old-releases.ubuntu.com/releases/">
Version
</reference>
</references>
<cpe-23:cpe23-item
name="cpe:2.3:o:canonical:ubuntu_linux:16.04.4:*:*:*:*:*:*:*"/>
</cpe-item>

The NVD database is represented as a set of compressed

JSON files (each one contains vulnerabilities for particular
year, starting from 2002, and there is a file, that contains the
last changes). One can get the current version of NVD from
its data feeds webpage (https://nvd.nist.gov/vuln/data-feeds).

Vendor and product information might be included to a
CVE entity as a part of the “affects” field (Listing 3) or the
"configurations" field (Listing 4). They use the logical and
comparison operators to strictly define versions of affected
products.

Listing 3. Part of “affects” field of CPE record
{
 "vendor_name" : "canonical",
 "product" : {
 "product_data" : [{
 "product_name" : "ubuntu_linux",
 "version" : {
 "version_data" : [{
 "version_value" : "16.04",
 "version_affected" : "="
 }, {
 "version_value" : "17.10",
 "version_affected" : "="
 }]
 }
 }]
}

Listing 4. Part of “configurations” field of CPE record
{
"operator" : "OR",
"cpe_match" : [{
"vulnerable" : true,
"cpe23Uri" :
"cpe:2.3:o:canonical:ubuntu_linux:16.04:*:*:*:lts:*:*:*"
}, {
"vulnerable" : true,
"cpe23Uri" :
"cpe:2.3:o:canonical:ubuntu_linux:17.10:*:*:*:*:*:*:*"
}]
}

V. STRUCTURE OF SEMANTIC MODEL
One of the purposes of this work has been to annotate

vendor and software entities from the CPE Dictionary.
Informally, to do that, we had to apply the following
procedure to the CPE data. To get a DBpedia entity for a
software product it is necessary to take a string from the
“title” tag of a CPE record, e.g. “Canonical Ubuntu Linux
16.04.4” (Listing 2), cut version and update pieces of data in
order to get a clear name, e.g. “Canonical Ubuntu Linux”,
and try to annotate the clear name. Similarly, to get a
DBpedia entity for a vendor, e.g. “canonical”, it is necessary
to take a vendor field from the “cpe-23:cpe23-item” string
(Listing 2) and try to annotate it.

In order to store given results a semantic model has been
created, shown in Figure 2.

Fig. 2. Semantic model of CPE/DBpedia software vendors
and products

“DBpediaResource” entities show mappings between

different DBpedia objects and entities, obtained from CPE
(“CPEVendor” and “CPEProduct”). DBpediaResource can
be the “differentFrom” or “sameAs” a CPEVendor or
CPEProduct. The property of difference might be added by
hand in order to correct possible annotation errors. The
“sameAs” properties mainly have to be obtain from the
automatic annotation process, but some of them might be
manually added too.

Obviously, parsing of the CPE Dictionary allows to
determine relations between vendors and products, like
“CPEVendor produces some CPEProduct”, and
“CPEProduct is produced by some CPEVendor”. These
properties (“produces” and “isProduced”) are actually
asymmetric, so there is an option to get one from another by
a reasoning process.

“AnnotationStatus” entities are intended to describe
annotation states of the CPEProducts and CPEVendors. It
might have successfully annotated CPE entity, false
annotated, manually annotated, or with “annotation not
found” state.

Also, CPE style names are used to identify products and
vendors, mentioned in the NVD dataset. For CPEProduct it
is “CPEName” in format “part:vendor:product”. For
CPEVendor the “vendor” field from CPE string is used. An
alternative way to solve the identification issue is to give the
same identifiers (IRI) for entities from the CPE and NVD
datasets.

The development of fully-functional semantic model of
NVD has been out of scope of this work. To illustrate given
ideas, we have created the simple NVD model (with an
intention to expand the model in future research), shown in
Figure 3.

Fig. 3. NVD semantic model

A “CVE” entity represents a CVE vulnerability, and it

38

https://nvd.nist.gov/vuln/data-feeds

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no.7, 2019

affects CPEProduct, that represents an entity from the
CPE/DBpedia model; so the CPEProduct is affected by the
CVE (might be obtained by reasoning).

VI. IMPLEMENTATION OF SEMANTIC MODEL
The proposed implementation includes two software

modules: for creation of the CPE/DBpedia semantic model
and for creation of the NVD model. Also we consider the
CPE/DBpedia and NVD models as end products, especially
the first one, because manual checking and corrections have
been performed for automatically annotated entities to
increase quality of the results. The source code of the
developed software modules and the RDF files of resulting
models have freely been published by Github
(https://github.com/nets4geeks/abCAPECCWESemanticModel).

Software modules have been written in Java. The first one
parses the CPE Dictionary in the XML format, annotates the
CPE entities (products and vendors) by asking DBpedia
Spotlight, writes the results to a RDF file
(CPEDBpedialModel.ttl). The second one parses the NVD
files in the JSON format and writes results to a RDF file
(NVDSemanticModel.ttl). To read XML the standard
package javax.xml.parsers has been used; it contains API,
able to manipulate an object model (DOM - Document
Object Model) of XML. To read JSON the Jackson JSON
parser (https://github.com/FasterXML/jackson-core) has
been used, it can combine line-by-line parsing with using
object model. The OWL API version 5 external library
(https://github.com/owlcs/owlapi) has been used to generate
RDF. The Apache Maven (https://maven.apache.org/) is
responsible for deployment and building of the software.

CPEDBpedialModel.ttl contains the CPE/DBpedia
semantic model, i.e. facts about annotated DBpedia entities
(Listing 5), CPE products (Listing 6), and CPE vendors
(Listing 7).

Listing 5. Example of DBpediaResource (CPEDBpedialModel.ttl)
<http://dbpedia.org/resource/Ubuntu_(operating_system)>
 rdf:type owl:NamedIndividual ,
 :DBpediaResource ;
 owl:sameAs :canonical_ubuntu .

Listing 6. Example of CPEProduct (CPEDBpedialModel.ttl)
:canonical_ubuntu_linux rdf:type owl:NamedIndividual ,
 :CPEProduct ;
 :hasAnnotationStatus :ManualAnnotatedStatus ;
 :isProducedByVendor :canonical_vendor ;
 :hasCPEName "o:canonical:ubuntu_linux"@en ;
 rdfs:comment "Canonical Ubuntu Linux "@en ;
 rdfs:label "canonical:ubuntu_linux"@en .

Listing 7. Example of CPEVendor (CPEDBpedialModel.ttl)
:canonical_vendor rdf:type owl:NamedIndividual ,
 :CPEVendor ;
 :hasAnnotationStatus :ManualAnnotatedStatus ;
 :producesProduct :canonical_accountsservice ,
 :canonical_acpidashsupport ,
 :canonical_juju ,
 :canonical_libpamdashmodules ,
 :canonical_ltsp_display_manager ,
 :canonical_lxcfs ,
 :canonical_php5 ,
 :canonical_reportbug ,

 :canonical_softwaredashproperties ,
 :canonical_telepathydashidle ,
 :canonical_ubuntu_core ,
 :canonical_ubuntu_linux ,
 :canonical_ubuntu_touch ,
 :canonical_updatedashmanager ;
 :hasCPEVendorName "canonical"@en ;
 rdfs:label "canonical"@en

NVDSemanticModel.ttl contains the simplest NVD

semantic model, that allows to unite CPE product entities
with CVE entities. Listing 8 shows an example of a CVE
entity.

Listing 8. Example of CVE (NVDSemanticModel.ttl)
:CVE-2017-7358
 rdf:type owl:NamedIndividual ,
 :CVE ;
 :affectsProduct
<http://www.grsu.by/net/CPEDBpediaModel#canonical_ubuntu_linux> ,
<http://www.grsu.by/net/CPEDBpediaModel#lightdm_project_lightdm> ;
 :problemsCWE
<http://www.grsu.by/net/CAPECCWEAttackPatterns#iCWE_22> ;
 rdfs:label "CVE-2017-7358"@en .

If one has got CPEDBpedialModel.ttl and

NVDSemanticModel.ttl, it can test the models using
SPARQL with the Apache Jena tool set
(https://jena.apache.org/). For example to get all the CVE
vulnerabilities of the DBpedia resource with the identifier
http://dbpedia.org/resource/Ubuntu_(operating_system) (or
dbr:Ubuntu_(opearating_system)), that relate to the “CWE
22” weakness, one can use a SPARQL request, shown in
Listing 9 (the “problemsCWE” property has been added to
the NVD model through additional research, also see details
about the CWE/CAPEC model in [15]).

Listing 9. Example of using CPE/DBpedia semantic model
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
PREFIX owl: <http://www.w3.org/2002/07/owl#>.
PREFIX xcpe: <http://www.grsu.by/net/CPEDBpediaModel#>.
PREFIX xnvd: <http://www.grsu.by/net/NVDSemanticModel#>.
PREFIX xcwe: <http://www.grsu.by/net/CAPECCWEAttackPatterns#>.
PREFIX dbr: <http://dbpedia.org/resource/>.
SELECT ?product ?cve
FROM <./CPEDBpediaModel.ttl>
FROM <./NVDSemanticModel.ttl>
WHERE
{
 dbr:Ubuntu_\(operating_system\) owl:sameAs ?product .
 ?cve xnvd:affectsProduct ?product ;
 xnvd:problemsCWE xcwe:iCWE_22 .
}

The execution of the SPARQL request from Listing 9, is

shown in Figure 4.

39

https://github.com/nets4geeks/abCAPECCWESemanticModel
https://github.com/FasterXML/jackson-core
https://github.com/owlcs/owlapi
https://maven.apache.org/
https://jena.apache.org/
http://dbpedia.org/resource/Ubuntu_(operating_system

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no.7, 2019

Fig. 4. Execution of SPARQL request

VII. DISCUSSION OF RESULTS
Creation of the CPE/DBpedia semantic model was

actually passing with two stages: after the automatic
annotation had been done, we performed the manual review
of given results in order to analyse them and make some
improvements. Obviously, the automatic annotation process
might produce some mistaken results. A problem with
DBpedia Spotlight is they do not recommend it for short
pieces of text, so we used this service at own risk.

We had also expected some generalized results. For
example, a most general result for “Ubuntu” is a Southern
African philosophy or dbr:Ubuntu_(philosophy). To reduce
influence of generalization mistakes we built into the
software a set of restriction rules for the automatic
annotation results, shown in Table 1.

TABLE I

RESTRICTIONS FOR AUTOMATIC ANNOTATION
Type of entity Include rdf:type Exclude rdf:type

Product “a”
(application)

dbr:Software -

Product “o”
(operating
system)

dbr:Software -

Product “h”
(hardware)

dbr:Device dbr:Weapon
dbr:Engine
dbr:Instrument

Vendor dbr:Company
dbr:Organisation
dbr:Developer

-

A product “a” means a product, having the “a” part of its

CPE name (or an application), “o” means an operating
system, “h” points to a hardware specific product. The rules
are based on the rdf:type properties of a DBpedia entity. For
particular type of entity include rules act before exclude
rules. So, a hardware entity is only taken into consideration,
if it is a device and not weapon, engine or instrument.

Below some distinctive examples of annotation errors are

shown, that have been found during the manual review.
Applying the restriction rules to the automatic annotation

process has avoided many generalization mistakes, e.g.
refusing the recognition of the Juniper Router M10 as the
M10 tank destroyer of World War II
(dbr:M10_tank_destroyer). However, taking into
consideration the not strict structure of DBpedia entities,
some valuable annotations might have been lost, because of
absence of necessary properties (e.g. "rdf:type dbr:Software"
for an application or operating system).

The next kind of annotation mistakes, we have managed
to recognize, refers as a choice of the most general term in a
sequence. An example of such failure is shown in Figure 1.
Spotlight had recognized the “Canonical Ubuntu Linux”
term (“Ubuntu Linux” too) as more general Linux
(dbr:Linux); so, it required a manual correction (see Listings
5-6). Also many of Linux-related entities (Adobe Flash
player for Linux, Gentoo Linux, Gnome, GNU libc, Linux
kernel, SUSE Linux, etc.) have been mapped to the most
general Linux entity. And the similar issue is with Drupal
(and WordPress too). There are plenty CPE products, having
the names “something for Drupal” (third-part addons,
plugins, etc.), that have been recognized as Drupal
(dbr:Drupal).

For hardware a most distinctive example of false
annotation is mapping of the IBM/Lenovo Flex system
nodes (e.g. “IBM Flex System X220 M4 Firmware”) as
Apache Flex (dbr:Apache_Flex). The reason of failure is
probably Wikipedia does not have a page, related to
IBM/Lenovo Flex. More common problem here is possible
ambiguous interpretation of hardware-related entities, it
might be a confusion how to consider, saying, a piece of
firmware: as hardware or software (operating system) entity.

The most inexplicable failure with vendors is about
inability to annotate “microsoft” (the leading lowercase
letter). However, Spotlight can map “Microsoft” (the leading
capital letter) to the right entity (dbr:Microsoft). The service
does not seem to be case-sensitive, because it is able to
annotate the “cisco” (the leading lowercase) vendor in the
right way (dbr:Cisco_Systems).

And again, Spotlight had been unable to annotate the
“canonical” vendor (as well as “Canonical”), and the
mapping was added manually.

TABLE 2

ANNOTATION SUMMARY OF SEMANTIC MODEL
Type of entity Found

entities
Automatic
annotated

False
annotated

Manual
annotated

Product “a”
(application)

13143 3623 206 0

Product “o”
(operating
system)

1394 198 49 9

Product “h”
(hardware)

4515 119 44 0

Vendor 5596 387 28 4

Table 2 shows the summary of annotations, which the

current version of the CPE/DBpedia semantic model

40

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no.7, 2019

contains. “Found entities” represents the number of entities,
obtained from CPE; “Automatic annotated” shows the
number of automatic annotated entities by Spotlight; “False
annotated” and “Manual annotated’ describes the results of
the manual review. Keep in mind, the count of manual
annotations might change, because we are updating the
model in order to improve it
(CPEDBpediaModelManual.ttl).

Taking into consideration the relatively low success rate
of annotations, the most significant result, that follows from
Table 2, is the LOD cloud contains a little information about
software products from the CPE Dictionary at the moment.
That is a quite rough estimate, but, obviously, effective
integration of the LOD and NVD data based on CPE is only
possible for a limited set of software products. Also, we
believe that if someone replaces our rough automatic
annotation approach with a more accurate one, it might be
possible to get slightly better results.

VIII. CONCLUSIONS
This work shows the process of the creation, description

of the structure of the semantic model of software products
and vendors, that maps DBpedia and NVD datasets by the
CPE data and DBpedia Spotlight annotation results. We
believe it contains the qualitative data, because it has been
checked manually. The semantic model can be used to
extend the DBpedia dataset by vulnerabilities related data
from the NVD software security repository. Given model
and software has freely been published with the public
GitHub service (see link above).

The mapping of NVD with DBpedia based on CPE and
DBpedia Spotlight as the very first step to security data
integration does not seem to be easy. The automatic
annotation has strongly suffered from getting general results,
instead of specific ones. Also, there is an issue with
possibility to choose the most general term in a given
sequence. And the last challenge relates to possible
incompleteness and inconsistency of the LOD data.
Obviously, it needs to improve annotation techniques in
order to involve fully automatic process there.

Also it should be taken into consideration, DBpedia
resources should be treated as dynamic entities with
changeable data and structure. A thing, we call a DBpedia
resource and use to create an object of a knowledge base, is
actually a Wikipedia page, managed by different people. It is
not protected from violations of structure and mistaken data,
and it can be assumed possibility of data corruption with
malicious goal. So, a security system, that uses the LOD
data, should be preserved from that kind of intrusion.

REFERENCES
[1] Färber M. et al. Linked data quality of dbpedia, freebase, opencyc,

wikidata, and yago //Semantic Web. – 2018. – Т. 9. – №. 1. – С. 77-
129.

[2] A. A. Chechulin, I. V. Kotenko, O. V. Polubelova, Design of the
ontology based data model for the network attack modeling system.,
Trudy SPIIRAN., 2013., Т. 26., pp. 26-39.

[3] Takahashi T., Kadobayashi Y. Reference ontology for cybersecurity
operational information //The Computer Journal. – 2015. – Т. 58. –
№. 10. – С. 2297-2312.

[4] Takahashi T. et al. Web of cybersecurity: Linking, locating, and
discovering structured cybersecurity information //International

Journal of Communication Systems. – 2018. – Т. 31. – №. 3. – С.
E3470.

[5] Syed Z. et al. UCO: A Unified Cybersecurity Ontology //AAAI
Workshop: Artificial Intelligence for Cyber Security. – 2016.

[6] A. Joshi, R. Lal, T. Finin, and A. Joshi, “Extracting Cybersecurity
Related Linked Data from Text” in IEEE Seventh International
Conference on Semantic Computing, 2013, pp. 252–259.

[7] Narayanan S. N. et al. Early Detection of Cybersecurity Threats
Using Collaborative Cognition //2018 IEEE 4th International
Conference on Collaboration and Internet Computing (CIC). – IEEE,
2018. – С. 354-363

[8] Alqahtani S. S., Rilling J. An ontology-based approach to automate
tagging of software artifacts //Proceedings of the 11th ACM/IEEE
International Symposium on Empirical Software Engineering and
Measurement. – IEEE Press, 2017. – С. 169-174.

[9] Lehmann J. et al. DBpedia–a large-scale, multilingual knowledge
base extracted from Wikipedia. //Semantic Web. – 2015. – Т. 6. – №.
2. – С. 167-195.

[10] Chabchoub M., Gagnon M., Zouaq A. FICLONE: improving
DBpedia spotlight using named entity recognition and collective
disambiguation //Open Journal of Semantic Web (OJSW). – 2018. –
Т. 5. – №. 1. – С. 12-28.

[11] Kliegr T. Linked hypernyms: Enriching DBpedia with Targeted
Hypernym Discovery, Journal of Web Semantics, JWS, Elsevier,
2015.

[12] Milosevic N. Marvin: Semantic annotation using multiple knowledge
sources // arXiv preprint arXiv:1602.00515. – 2016.

[13] Mendes P. N. et al. DBpedia spotlight: shedding light on the web of
documents. //Proceedings of the 7th international conference on
semantic systems. – ACM, 2011. – С. 1-8

[14] Daiber J. et al. Improving efficiency and accuracy in multilingual
entity extraction. //Proceedings of the 9th International Conference on
Semantic Systems. – ACM, 2013. – С. 121-124.

[15] Brazhuk A. Semantic model of attacks and vulnerabilities based on
CAPEC and CWE dictionaries. //International Journal of Open
Information Technologies. – 2019. – Т. 7. – №. 3. – С. 38-41

Andrei Iosifovich BRAZHUK
Researcher, senior lecturer at the Yanka Kupala State University of Grodno
(https://www.grsu.by)
email: brazhuk@grsu.by
publications: https://scholar.google.com/citations?user=lxR8RLkAAAAJ

41

https://www.grsu.by/
mailto:brazhuk@grsu.by
https://scholar.google.com/citations?user=lxR8RLkAAAAJ

	I. INTRODUCTION
	II. Related work
	III. DBpedia and semantic annotation
	IV. CVE, NVD and CPE
	V. Structure of semantic model
	VI. Implementation of semantic model
	VII. Discussion of results
	Table I
	Restrictions for automatic annotation
	Table 2
	Annotation summary of semantic model
	VIII. Conclusions
	References

