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Abstract—Leading experts around the world analyzed 

geophysical images daily by and with the development of 
computer vision technologies, attempts should be made to 
automate this process. Image data can be acquired quickly 
using consumer digital cameras, or potentially using more 
advanced systems, such as satellite imagery, sonar systems, and 
drones and aerial vehicles. The authors of this article have 
developed several approaches to the automatic creation of 
seismic images. The amount of obtained images became enough 
to use algorithms of machine learning for their processing. In 
the last five years, computer vision techniques have evolved at a 
high rate and have advanced far from the use of Deep Neural 
Networks (DNN). It would be reckless to use in work only the 
latest developments without understanding how they appeared. 
Therefore, the authors reviewed the approaches of computer 
vision to determine the most appropriate techniques for 
processing high spatial images that differ from the most 
popular tasks of computer vision (face recognition, detection of 
pedestrians on the street, etc.). The main result of the paper is 
the set of research hypothesis for computer vision in 
Geoscience. 
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I. INTRODUCTION TO IMAGE CLASSIFICATION 
The classification of images refers to the assignment of an 

image to certain categories (classes) defined in advance. 
Classification of images is divided according to the type 

of classification problem into binary and multi-class. In the 
case of binary classification, the problem of assigning an 
image to a single class is solved and the answer can only be 
“yes” (1) or “no” (0). With multi-class classification, the 
answer is the presence or absence of each of the pre-selected 
classes on the image. 

An example of a binary classification is the answer to the 
question:  “Is there a channel in the image or not?” (Fig. 1).  
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Fig.1. An Example of seismic image. 
 
An example of a multi-class classification of an image 

may be the answer to the question: “What are the steps of the 
channel meandering process from the given dictionary 
presented in the image?” (Fig. 1). 

 
To create the process of automatic classification of 

images, it is necessary to select features from the image.  
 

 
Fig. 2. The scheme of classification process. 
 
The diagram (Fig. 2) shows the process of image 

classification and the place of machine learning in this 
process. Unlike computer algorithms, people can recognize 
images with poor quality. For machine learning, it is 
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necessary to make manual labeling of images. Trained 
feature selection and classification functions should work 
with new images in the future. 

 

II. FINE-GRAINED CLASSIFICATION 
 From the classification task, we can pick the sub-task of 

fine-grained classification. The fine-grained classification 
pays much more attention to details. Usually, separate intra-
class and inter-class fine-grained classification. The fine-
grained classification is intended for very similar objects 
according to [1]. 

For problems of the fine-grained classification, several 
classifiers are combined into an ensemble with subsequent 
collegial decision making. As, for example, in the work [2] 
proposed a model that identifies the shape of the bird’s beak 
and the shape of the paws for further conjugation when 
referring to a particular subclass. 
Thus, the selected features of different scales are combined 
into a single matrix of characteristics for classification. In 
the example above, it is shown that the methods for selecting 
features can be accurately tuned to certain parts of the object 
in the image. Such approach allows us to break the complex 
problem of the fine-grained classification into two more 
simple subtasks of multi-class classification. 

III. DEFINING OBJECT ATTRIBUTES 
Attributes are descriptive aspects of the object on the image. 
Concerning human faces in the images, attributes are age, 
sex, race, emotions, etc. The task of selecting the attributes 
of an object preceded by the work of finding this object on 
the image and selecting the boundaries of the object (Fig.3). 
 

 
Fig. 3. Original image (on the left) and the object selected for the 
attribution (on the right). 
 

For the object found, the task of multi-classification of the 

object’s attributes from a given dictionary can be solved 
both as a global problem and as a task of the fine-grained 
classification of parts of an object (locally). 

As noted in the study [3] for a global approach to solving 
the task of attribution, overfitting is a particular problem. 
Therefore, with a global approach, regularization, complex 
loss functions, and image augmentation are intensively used. 
On the other hand, with a local approach, a separate 
mechanism is usually used to select objects, and a set of 
classifiers trained for those type of objects [4]. Global and 
local approaches to the attribution of objects on images 
differ in the way of feature extraction. 

IV. IDENTIFYING THE KEY POINTS OF AN OBJECT 
Let us consider in more detail the problem of identifying 

the key points of an object on the example of human faces. 
The mathematical statement of this problem is made in the 
work [5] as a regression problem. Individual parts of the 
face (a nose, a mouth, an eye) can be selected with the help 
of a local approach, and then regression is performed to find 
the coordinates of the key points of these facial parts (X, Y). 
On the other hand, a global approach to finding the key 
points of an object also has the right to exist. In this case, 
based on the selected features, the regression problem is 
immediately solved for finding the coordinates of the key 
points. In work [6] the analysis of various models for 
allocation of the key points on the face is made. Among 
these models, SIFT [7] methods are used for accuracy and 
productivity, using statistics of the physical structure of the 
face, and models based on HOG descriptors [8]. 
SIFT and HOG methods are used as detectors for the 
features by which the classification of images is based. 
The key points of objects in the tasks of classifying objects 
on seismic images can be the shape and curvature of river 
beds (Fig. 4). 
 

 
Fig. 4. An example of the key points of the seismic image. 
 

V. SLIDING WINDOW DETECTORS 
The task of detecting objects in an image can be divided 

into two subtasks: the detection of objects of a specific shape 
and size (man, cow, bicycle, etc.) and the discovery of 
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regions of textures of uncertain size and shape (grass, 
clouds, road, etc.). In both cases, the output of the object 
detector will be a data structure from the predefined 
dictionary containing the coordinates of the object’s 
bounding box in the image, the class of the object, and 
possibly the probability of belonging to this class when the 
classification is “weak”. 
In the study [9] in particular, the criteria for object detection 
are discussed. The object frame detected by the detector may 
differ from the correct object frame. The IoU metric 
(Intersection over Union) is designed to quantify the 
accuracy of the detector and is calculated as the ratio of the 
intersection of the frames to the area of the union of the two 
frames. The closer the metric IoU to one, the more 
accurately the object is detected. 
According to work, [10], the accuracy of the automated 
pedestrian position prediction does not exceed the 
possibility of human evaluation, even with the use of modern 
architectures such as R-CNN [11]. 
Manually labeled images datasets ImageNet [12], Caltech-
USA [13] and KITTI [14] are used to fit detectors. 
The central principle for detectors with a sliding window is 
to select the window size, search through all window 
positions on the image and binary classification of the object 
for each window position. After this, a conclusion is made 
about the position of the object in the original image. 
Immediately one can see several problems in this approach - 
such as the object can be of different sizes, with different 
width and height ratios, objects can intersect, and different 
frames can contain the same object. Modern architectures of 
object detectors are looking for ways to solve the listed 
problems. For example, you can create a set of multi-scale 
image options for constant window size. 

VI. DETECTORS OF OBJECTS BASED ON HISTOGRAMS OF 
ORIENTED GRADIENTS 

Histograms of oriented gradients (HOG) was proposed in 
research [8]. The main idea of the HOG algorithm is that the 
image is divided into a grid and the direction of the color 
gradient is calculated in each cell. In general, the HOG-
based detector algorithm is shown in the figure (Fig. 5). 

  

 
Fig. 5. The HOG algorithm 
 
The task of fitting the object detector is asymmetric: the 
number of the objects in the image are much smaller than the 
“no objects”. This imbalance is not acceptable for 

classification problems in machine learning. Also, the “non-
object” is a reasonably complex class, so it is necessary to 
have enough different instances of “non-objects” in the 
sample to distinguish them from the object reliably. 
The technique of image augmentation is used to eliminate 
the imbalance. Each picture of the object is slightly 
deformed: it rotates a small angle, reflects itself horizontally 
and scaled. Thus, the number of positive samples in the 
sample is significantly increased. 
For “non-objects” in the sample, it is essential to divide by 
“exactly not objects” and “not objects with parts of objects”. 
Both types are essential for training and are usually created 
as part of a separate procedure. 
We note the resultant approach to the selection of features 
based on the Haar cascade, demonstrated in the work [15]. 
And also, the Viola-Jones object detector, proposed in the 
articles [16, 17], and using the cascading architecture of 
classifiers. 
Cascade architecture classifiers for object detectors in 
images has been developed in the following works [18, 19]. 

VII. DETECTORS OF OBJECTS BASED ON NEURAL NETWORKS 
Before the appearance of the Viola-Jones detector 16, the 

best accuracy reached by detector based on neural networks, 
proposed in [20]. In work, [21] the convolutional neural 
network was used as one of the classifiers in the cascade. In 
addition, in the study [22] the cascade of the three classifiers 
and regression is already wholly built on the pre-trained 
convolutional neural networks. At each stage of the cascade, 
both the object classification and regression are performed 
to determine the object bounding boxes. Thus, the cascades 
combine three convolutional neural networks with different 
complexity. 

Further development of object detectors was obtained in 
particular neural networks. In work [23] the architecture of a 
neural network consisting of two cascades for the proposal 
of object bounding boxes and classification (R-CNN) is 
proposed. The training of R-CNN consists of three stages 
(Fig. 6). 

 
Fig. 6. R-CNN training steps. 
 

The disadvantages of the R-CNN architecture include 
excessive calculations of features for each proposed 
bounding box, the need to bring all images to a single scale. 
An attempt to eliminate these shortcomings was made in the 
Fast R-CNN architecture [24]. 

For this purpose, a mechanism for the spatial pyramid 
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pooling (SPP) is proposed. The essence of SPP is to 
calculate the attributes of objects within a bounding box 
using one convolutional neural network for the entire image 
Further improvement of R-CNN is suggested in the works  
[11, 25] and is to use softmax activation instead of the linear 
SVM classifier and combine the CNN to extract features and 
CNN to identify the bounding boxes. 

The problems that have arisen in this approach are noted 
in the work [26] and consist of difficulties when working 
with objects in very different scales on one image. To do 
this, you have to train Faster R-CNN for different scales of 
the image. 

Thus, according to the research [27] Faster R-CNN 
architecture combines speed and accuracy by creating 
multiple intersecting hypotheses for bounding boxes, 
attributes calculated independently for each bounding box 
based on a single convolutional neural network and a 
separate evaluation of the bounding boxes. 

Further ways to speed up image processing were 
developed by the authors of the study [28] in the R-FCN 
architecture and are to replace fully connected layers 
(Dense) to convolutional layers (Conv2D) with a dimension 
of 1x1 (Fully Convolutional Networks, FCNs). Such a 
replacement allows not to convert images to the scale of the 
sample used to train the convolutional neural network for 
classification (224x224 for ImageNet). 
Currently, the fastest architecture of object detectors is 
Single Shot Detectors (SSD). One of the striking examples 
of SSD is the YOLO (You Only Look Once) detector [29], 
developed by Google developers. Research [30] presents a 
new SSD architecture that showed higher performance than 
YOLO. 

VIII. SCENE LABELING 
Scene labeling strategy is a segmentation-based approach, an 
image is segmented and its various regions are classified, 
unlike classifying the individual pixels. 
Scene labeling demands contextual information because of 
the labels tend to be dependent across pixels. Further, every 
image consists of information that is required to label pixels 
at several levels. 

A. Superpixel algorithm 
In order to enhance the segmentation, some pre-processing 
techniques are implemented. One of the widely used 
techniques is superpixel to segment the image. 
The superpixels algorithm [31] produces compact and 
perceptual meaning to small regions of image. Each pixel in 
a superpixel symbolizes the essential piece of the same 
object. 
By now, publicly available superpixel algorithms have 
turned into conventional tools in low-level vision. 
The authors are familiar with more than ten algorithms based 
on superpixel technique. We discovered that Superpixels 
from Edge-Avoiding Wavelets (SEAW) [32] is not yet 
popular in discussions so far. 
An exclusive web portal [33] was created to compare the 
performance of various algorithms based on the superpixel 
algorithms. 

IX. COMPUTER VISION IN GEOSCIENCE 
With the development of spatial information technology, 
remote sensing imagery has become a vital data source for 
many geoscience domains. 
Recent studies using space and aerial images to detect 
earthquake-induced building damage via image 
segmentation [34] using joint color and shape features. 
Damage detection problems such as crack detection [35] and 
structural damages [36] have been investigated using local 
contexts encoded by different methods. Vision-based bridge 
component extraction approach was developed in [37]. 
An urban vehicle detection algorithm was proposed via 
dictionary learning for aero photos in [38]. 
An exciting study of image segmentation for search textures 
such as sand ripple, hard-packed sand, and rock was 
conducted in work [39]. The sonar images have the same 
nature as seismic ones. 
The focus on spatial attributes and its examination in a new 
application for seismic interpretation, i.e., seismic volume 
labeling was made in research [40]. For this application, a 
data volume was automatically segmented into various 
structures, each assigned with its corresponding label. 
Spectral decomposition is one of the sources of seismic 
images. Hyperspectral images are the subject for 
classification with independent component discriminant 
analysis [41], Bayesian approach [42] and Generative 
Adversarial Network [43]. 

X. RESEARCH HYPOTHESIS 
Geophysical high-resolution images serve as a source for 
obtaining new information using computer vision. 
The authors identified two areas for further research that 
deserve attention: 
1. Detection of geological objects. Determination of their 

shape, relative position, and volumetric characteristics, 
2. Determination of the content of geological objects. 

Energy characteristics of geological objects. 
These areas of research are not fundamentally new. But with 
the advent of modern tools and techniques for working with 
high-resolution images, it is advisable to re-evaluate their 
capabilities. 
The main research hypotheses that the authors have accepted 
for themselves in subsequent works are as follows: 

Do the methods of computer vision allow to create a fully 
automated process for the identification of geological 
objects by seismic volume? 
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