
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no. 3, 2019

On the task of extracting the root
from the language

B. F. Melnikov, S. Yu. Korabelshchikova, V. N. Dolgov

Abstract—In this paper, we consider a special case of con-
structing the inverse morphism for the given finite language: we
try to extract the root from this language. For such extracting,
we consider some special simple cases.

We shall firstly look at some special class of languages, for
which the problem is solved easily. Namely, we describe this
class, consider some examples, and give some obtained results
of computer experiments. Then we define antiderivative roots
and give some propositions that show, how to use antiderivative
roots for obtaining any root of the given degree.

Then we give an interesting example, which refutes a possible
simple algorithm for this task. Therefore, if there exists a
polynomial-time algorithm that solves this problem, then it
should be formulated more complicated.

We hope that the further development of the theory de-
scribed in this paper will provide an opportunity to describe a
polynomial-time algorithms for solving the general case of this
problem.

Keywords—formal languages, exponential algorithm, poly-
nomial-time algorithm, root extraction.

I. INTRODUCTION

We use terminology, notation, and some results from [1].
However, this paper is not a continuation of that one: here,
we only consider one of the problems set there. It would be
more correct to say, that this paper is a continuation of the
topics of [2], [3], [4], [5].

In this paper, we look at an important case for the
hypothesis considered in [1] (we called it “the second hy-
pothesis”): we consider a special case of constructing the
inverse morphism for the given finite language, i.e., we try
to extract the root from the given finite language. Let us note,
that our task is much more complicated than, for example, the
simple algorithms of extracting the root from a given word;
the last one can be formulated, e.g., by [6, Ch. 1, Ex. 4, 5].

Thus, we extract the root from the given finite language.
We can formulate our problem in the following way. For the
given language A, we build such a language B over the given
alphabet Σ, for which

A = Bn. (1)

(All notation associated with the theory of formal languages
is standard. We can, for example, assume, that we are
applying notation of [6] using the “new” symbol for the
empty word, i.e. ε.)

We already used the term “a root of the language”; by
(1), B can be defied as “a root of the language of n-th

Received December 31, 2018.
Boris F. Melnikov, Russian State Social University (email: bf-melnikov@

yandex.ru).
Svetlana Yu. Korabelshchikova, Northern (Arctic) Federal University

named after M. V. Lomonosov (email: s.korabelsschikova@narfu.ru).
Vasily N. Dolgov, independent researcher (email: terenga74@mail.ru).

degree”. However, this term requires further definitions, we
shall consider only some of them in this paper. The main
note is that the root, generally speaking, is not the only one
(see details below). Therefore, the simple notation n

√
A is

used:
• sometimes for the set B such that Bn = A;
• and sometimes for the set of such sets.

For this reason, we shall not use this notation.
For such extracting, we consider some special simple

cases, and then give an interesting example, which refutes
a possible simple algorithm for this task. (This incorrect
algorithm can be considered as an analogous to the men-
tioned algorithm of extracting the root from the given word.)
Therefore, if there exists a polynomial-time algorithm that
solves this problem, then it should be formulated more
complicated. We hope that the further development of the
theory described in this paper will provide an opportunity
to describe a polynomial-time algorithms for solving this
problem and the other problems set in [1].

This paper has the following structure. In Section II, we
give some reasons that explain the need to consider our task.
In Section III, we consider the formal problem setting and
give an example.

In Sections IV and V, we shall look at some special
class of languages, for which the problem is solved easily.
Namely, in Section IV, we describe this class, consider
some examples, and give some obtained results of computer
experiments. And in Section V, we define antiderivative
roots and give some propositions that show, how to use
antiderivative roots for obtaining any root of the given degree.

In Section VI, we consider the general statement of the
problem again. We formulate an method for extracting roots;
however, as we said before, this method leads to an incorrect
algorithm. But we believe that it is to be formulated, because
it reflects possible directions for further work. Some of these
directions are shortly described in Conclusion (Section VII).

II. MOTIVATION: WHY DO WE CONSIDER THIS TASK?

Some reasons that explain the need to consider this task
were already given in our previous papers, for example, in
[1], [4], [5], etc. Let us cite some of them, as well as the
motivation not met in these papers.
• In some subclasses of the context-free language class

the equivalence problem is decidable, unlike the whole
class; see [7], [8], [9].

• An example of such a class is the “notorious” class
of deterministic context-free languages, the equivalence
issue for which was formulated back in the late of
1960s (see, for example, [10, Sect. 4.2]), and then was
subsequently resolved. It is not known to the authors of

1

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no. 3, 2019

this paper, that anyone found errors in the proof given
in a series of parers of L. Staneviciené (see [11], [12]
and some papers cited there). Besides, it is possible,
apparently, to bring to the end a not completed proof of
V. Meytus, see [13]: that paper does not contain obvious
errors. But, as usual in such situations, the author of
the proof for the problem of equality of deterministic
CF-languages (i.e., equivalence of deterministic MP-
automata) “is generally recognized” not a Russian sci-
entist, but G. Sénizergues, see [14].1

Thus, we are referring to subclasses that do not coincide
with the class of deterministic CF-languages. However,
some real programming languages can be described
using these subclasses, see some examples in [9]. To
describe these subclasses, we often consider pairs of
languages satisfying the conditions A ≡ B. (As we said
before, the corresponding definition was given in [1], [2]
etc.)

• Based on the conditions of the relationship A ≡ B, we
can formulate some necessary and sufficient conditions
for the commutation in the global monoid of the free
monoid 2 and some of its submonoids, see [3], [5], [15].
In other words, we can formulate some criteria for the
fulfillment of equality AB = BA, where A,B ⊆ Σ∗.

• The possible association between the conditions of the
relationship A ≡ B and some other algebraic problems
can be derived from the results of the papers [16], [17],
[18], where ω- and 2ω-languages are considered. 3

In our problems, such languages are usually generated
by infinite sequences of reflections of a point from the
sides of a certain polygon (in other words, they are
generated by special billiards). These results are asso-
ciated with some algorithmic problems for monomial
algebras (i.e. associative algebras defined by so-called
obstruction languages). This relationship follows from
the results of the classic works [19], [20], etc.
Note that in [1], we could consider the same ω-automata
instead of usual nondeterministic finite automata, and
formulate equivalence conditions for them.

• The tasks discussed in this paper arise in the graphical
description of the CF-languages class and some its
subclasses, see [11], [21], [22], [23]. In particular, we
obtain them when solving the equivalence problems in
these subclasses. 4

• And oddly enough, so-called “infinite” case (i.e., when
we allow infinite languages A or B in the condition
A ≡ B) is less complicated and less interesting than the
“finite” one; some results for the infinite case were given
in [24]. However, in some tasks, the need to consider
infinite languages A and B arises: for example, when
we consider the problem of description of conditions of
equivalence of morphic images of so-called bracketed

1 Apparently, an even more obvious example is the following. Yu. Med-
vedev published a paper in 1956, where, in fact, nondeterministic finite
automata were defined and considered. However, the authors of NFAs “are
generally recognized” M. Rabin and D. Scott, who described them later, i.e.
in 1959, but received the Turing Prize for describing such automata.

2 Sometimes it is called “supermonoid”, but that is not quite true.
3 For example, we can define 2ω-word α over the given alphabet Σ as

any mapping of the type α : Z → Σ.
4 Moreover, the development of this graphic approach gives an opportu-

nity to describe (also graphically) languages, having types 1 and 0 in the
hierarchy of Chomsky.

languages. (See papers [8], [9] cited before; we should
note once again, that in these works we have considered
some other variants of using morphisms of infinite
languages for description of some subclasses of the CF-
languages class.)

However, as we noted in [1], the most interesting question
is to establish a connection between the issues we are con-
sidering and the possible equality P=NP. In the mentioned
paper, the possible plan of research of this problem is given,
namely, the plan of proof of inequality of these classes.

III. THE FORMAL PROBLEM SETTING AND AN EXAMPLE

Thus, we shall extract here the root of the language; i.e.,
for the given language A, we build such a language B over
the given alphabet Σ, for which equation (1) holds. About
(1), we note the following:
• either n > 2 is set a priori; then, in case of absence of

the required language B, we return the negative answer,
also in the polynomial time;

• or n is not given; then we have to construct the language
B satisfied (1) for maximum possible n > 1.

It is obviously, that two these tasks almost coincide (and
do not change the fact of the possibility or impossibility
of constructing a polynomial-time algorithm): if there is a
solution to the first one, then by considering all the values
n from

max
u∈A

|u|

“downto” 1, we get the solution for the second of these tasks.
We also note the following fact. Of course, the task of

extracting the root from a given word is quite simple; but still
now, some of related questions are considered in the famous
monograph [6] as not quite trivial exercises. However, it is
unlikely that summarizing the relevant results for the words
to the case of the languages 5 can give interesting results: it
is, in fact, the reformulating the tasks for words in the terms
of languages.

In this regard, we also note the following fact from [1]. The
algorithm of constructing all the variants of representation of
the given word u in the form of concatenation of words of
some given finite language A is not polynomial-time. In this
regard, let us consider a trivial example

u = an, A =
{
a, a2, . . . , an−1

}
.

On this issue, we have the following facts:
• the size of the problem (depending on the n) is poly-

nomial;
• the number of variants for a representation required in

our problem is exponential (also depending on n);
• and, therefore, the number of variants for the consid-

eration (depending on the size of the task, we use the
brute force method here) is also exponential.

However, this fact does not prove the non-existing poly-
nomial-time algorithm for the whole problem we are consid-
ering, i.e. for the construction of inverse morphism required
in our problem.

5 From the algebraic point of view, it is a transition from monoids
to supermonoids. (The last term is considered in some sources not quite
successful, but we will not pay attention to such algebraic subtleties.)

2

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no. 3, 2019

Tab. 1. The count of roots

n / k 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
2 1 2 3 5 9 15 28 50 95 174 337 637 1231 2373 4618 8974 17567
3 1 2 4 7 13 25 49 95 185 365 721 1430 2844 5655 11259 22462 44829
4 1 2 4 8 15 29 57 113 225 447 889 1773 3537 7062 14109 28195 56361
5 1 2 4 8 16 31 61 121 241 481 961 1919 3833 7661 15317 30625 61233
6 1 2 4 8 16 32 63 125 249 497 993 1985 3969 7935 15865 31725 63445
7 1 2 4 8 16 32 64 127 253 505 1009 2017 4033 8065 16129 32255 64505
8 1 2 4 8 16 32 64 128 255 509 1017 2033 4065 8129 16257 32513 65025
9 1 2 4 8 16 32 64 128 256 511 1021 2041 4081 8161 16321 32641 65281

10 1 2 4 8 16 32 64 128 256 512 1023 2045 4089 8177 16353 32705 65409

IV. ABOUT ROOTS OF SPECIAL-TYPE LANGUAGES:
SOME SIMPLE EXAMPLES AND COMPUTER EXPERIMENTS

In this section and in the next one, we shall look at some
special class of languages, for which the problem is solved
easily. Namely, we investigate the question of extracting the
root of a given degree from the languages of the type⋃

t16i6t2

Σi, where t1, t2 ∈ N, t1 6 t2. (2)

Obviously, the root extraction operation is, generally
speaking, ambiguous: let us consider an example which is
an evolution of one considered in Section III.

Example 1. Let

A =
{
a8, a9, . . . , a23, a24

}
.

Square roots can be considered, among some others, lan-
guages

B1 =
{
a4, a5, . . . , a11, a12

}
,

B2 = B1 \
{
a6
}
, and B3 = B1 \

{
a10
}

;

we have
B1

2 = B2
2 = B3

2 = A,

besides

B1 =
{
a2, a3, a4, a5, a6

}2
=
{
a1, a2, a3

}4
,

and, at the same time, we have no language C, for which

C2 = B2 or C2 = B3.

Let us consider another interesting example.
Example 2. Let

A =
{
a0, a1, a2, a6, a8, a9

}
,

B =
{
a0, a1, a3, a6, a8, a9

}
.

Then

A2 = B2 =
{
a0, a1, . . . , a18

}
\
{
a5, a13

}
,

however

(A ∪B)2 =
{
a0, a1, . . . , a18

}
6= A2.

Let us also note another obvious fact: in order for the
root of n-th degree from the language of the type (2) to be
extracted, it is necessary and enough to both t1 and t2 are
divided into n. Let us formulate a simple generalization of
the last fact in the form of the following statement.

Proposition 1: Language⋃
i∈M

Σi

is the root of the n-th degree for language

A =
⋃

n·n16i6n·n2

Σi (3)

if and only if

M ⊆ {n1, n1 + 1, . . . , n2},

for which the following condition holds:

(∀i ∈ N) (n · n1 6 i 6 n · n2 ⇒ i = a1 + a2 + · · ·+ an).

Here, a1, a2, . . . , an are some elements of the set M , not
necessarily different ones.

Besides, we have the following bijection between the roots
of the n-th degree for language A defined before and the
roots of the n-th degree for language

B =
⋃

n6i6n·n2−n·n1+n

Σi :

the set of indices M of the root of language B corresponds
the set of indices

L = M ∪ {n1 − 1}

of the root of language A. �
Note that the number of roots of the n-th degree depends

on the n and the difference n2 − n1; the last value is the
difference of boundary values of the set of root indices. The
notation A (which, certainly, depends on n, n1, and n2, that
we shall not explicitly mark) will be used in the remainder
of the paper.

For further, we denote also k = n2 − n1 + 1; this
value is the cardinality of the set {n1, n1 + 1, . . . , n2}. We
implemented an algorithm of finding all the possible roots
for the given n, t1, and t2. The complexity of the calculation
of the obtained implementation is equal to

O
(
2(k−4) · n2 · k2

)
;

it allows to find all the roots for k 6 30. Table 1 (see before)
shows the count of roots for some n and k that our computer
program obtained. (For k ∈ { 1, 2, 3 }, the values are equal
to 1.)

V. DEFINITION AND BASIC PROPERTIES
OF ANTIDERIVATIVE ROOTS FROM LANGUAGES

For the future, let S be the set of set of indices for the
roots of the n-th degree for the language A defined by (3).

Definition 1: The root of the type⋃
i∈M

Σi

will be called an antiderivative one, if M is minimum on
inclusion of the set S.

3

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no. 3, 2019

The cardinality of the set of indices will be called the
weight of the root. �

Example 3. For the given language⋃
26i614

Σi,

we have the following 5 different square roots; they have sets
of indices

{1, 2, 3, 4, 5, 6, 7}, {1, 2, 3, 4,6, 7}, {1, 2, 4, 5, 6, 7},
{1, 2, 4, 6, 7}, and {1, 2, 3, 5, 6, 7}.

The two last sets are minimum ones, they corresponds to
antiderivative roots with the weights 5 and 6 respectively.

Let us formulate the obvious properties of the antideriva-
tive in the form of following statements.

Proposition 2: Let M ∈ S, besides let M be a set of
indices of minimum cardinality. Then the root corresponding
to M is an antiderivative one. �

Note that, generally speaking, the assertion reversed to the
last one is incorrect: the antiderivative root is not required to
have a minimum weight, see Example 3.

Proposition 3: Let ⋃
i∈M

Σi

be an antiderivative root of n-th degree for the language A
(3) with the set of indices M . Let

(α1, α2, . . . , αk)

be the binary characteristic vector (see [25] etc.) for subset
M of the set

{n1, n1 + 1, . . . , n2}.

Then the symmetrical vector

(αk, αk−1, . . . , α1)

also sets the set of indices of (another) antiderivative root.
�

Proposition 4: If the antiderivative root of the given
language is the only one, then the characteristic vector of
its set of indices is symmetrical. �

Proposition 5: Let ⋃
i∈M

Σi

be an antiderivative root of n-th degree for the language A
(3) with the set of indices M . Then for each set M ′, such
that

M ⊆M ′ ⊆ {n1, n1 + 1, . . . , n2},

the language ⋃
i∈M ′

Σi

is the root of n-th degree for the same language. �

Proposition 6: If the weight of the antiderivative root is
equal to w 6 k and it is the only, then the common number
of the roots for the considered language is equal to 2k−w.

Proof. This fact follows from the Proposition 4. �
Thus, as follows from the properties of antiderivative roots,

to get all the roots of n-th degree for the language⋃
n·n16i6n·n2

Σi,

there is enough to know all the original roots. This coincides
with obtaining their set of indices.

Example 4. Let us construct all the root of 3-rd degree of
the language ⋃

276i642

Σi.

The set of indices should be the subset of the set

{9, 10, 11, 12, 13, 14},

i.e. k = 6. For n = 3 and k = 6, we have the only
antiderivative root, its characteristic vector is (110011). Then
we obtain 4 roots, having the following sets of indices:

{9, 10, 13, 14}, {9,10, 11, 13, 14},
{9, 10, 12, 13, 14}, and {9, 10, 11, 12, 13, 14}.

Thus, the task of extracting the root from this type of
languages can be reduced to the task of representing some
natural numbers from the specified interval [t1, t2] as the sum
of n natural terms from the interval [t1/n, t2/n]. Therefore,
such a task can be considered as a special case of the
knapsack problem. Some possible algorithms for solving this
problem for situations we are considering in this paper, were
considered by one of the authors in [26]. The building set
of antiderivative of n-th degree allows to find all the roots
from the languages of the type (2). On the other hand, if the
set of all roots of a given language is large enough, then the
building its antiderivative roots can be considered as the best
way for description of this set.

VI. WHY DO NOT SIMPLE ALGORITHMS WORK?

Let us return to the general statement of the problem.
When considering our task (as well as some tasks related

to it), we can suggest the following simple “algorithm” for
its solving; let us note in advance, that this algorithm is
incorrect, this can be seen from the title of this section.
However, we believe that it is to be formulated, because it
reflects possible directions for further work, in particular, to
obtaining the correct polynomial-time algorithm for solving
the problem we are looking at.

Thus, we will consider the problem of extracting the root
of the n-th degree, when the language from which the root is
extracted (let it be A ⊆ Σ∗) and the value n > 1 are given.

Definition 2: The word u ∈ Σ∗ is a potential root if
un ∈ A.

The set of all potential roots will be denoted n
√
A. 6 (We

shall never omit n.) �

Example 5. Let

A = { abab, abaab, aabab, aabaab } .

Then
2
√
A = { ab, aab } .

Let us remark, that (
2
√
A

)2

= A.

Example 6. Let

A = { aa, abab, baba, babbab } .

6 As we said in Introduction, we do not use the simple notation n
√
A.

4

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no. 3, 2019

Then let us denote

B̃ =
2
√
A = { a, ab, ba, bab } ;

let us remark, that (
B̃
)2 6= A,

because, for example,

B̃ 3 aab, and aab /∈ A.

However, there exists B, such that B2 = A, that is

B = { a, bab } ;

let us remark, that B ⊆ B̃.
The following simple statement is given without proof.
Proposition 7: Let Bn = A. Then

B ⊆ n
√
A. �

Based on the last proposition, we obtain a trivial algorithm
for building any B, such that Bn = A: we should consider
all the subsets of the set n

√
A. Evidently, this algorithm is

not a polynomial-time one.
Besides, we could formulate a simple “algorithm” based

on the following hypothesis:

1) we consider a word of n
√
A having the maximum

possible length; if there are 2 or more such words,
then we choose an arbitrary one; let this word be u;

2) then we consider a word v = un−1;
3) if vw ∈ A, then we include w in the formed language

(let it be C);
4) C has no more words;
5) then Cn = A.

However, this hypothesis is false, and we can show this fact
in the following example.

Example 7. Let

B = { ab, abb, bba } ,

and let A = B2 be the given language. Then A contains the
word abbba. Besides:

1) B = 2
√
A;

2) abb is a word of B2−1 = B, such that it has the
maximum possible length, i.e. 3;

3) abbba = abb · ba,
but ba /∈ B.

We believe, that this example shows the need to build more
complex algorithms.

VII. CONCLUSION. SOME DIRECTIONS
FOR FURTHER WORK

Thus, we need to build more complex algorithms. How-
ever, of course, all algorithms for this problem should be
polynomial-time ones: the trivial exponential algorithm was
given in previous section.

(In describing the remaining problems for further solution,
we again use the terminology of [1] and other cited works.
Namely, we use the terms ≡ and mp+ defined there.)

We hope that in the future, we shall be able to describe
polynomial-time algorithms for solving both the problem
formulated in this paper and also one of the two following
more complex problems:

• for two given languages A and B, such that A 6= B,
but A ≡ B, we have to build language D, such that
A,B ∈ mp+ (D);

• for the given finite language A, we have to build
language D, such that A ∈ mp+ (D), besides, language
D is minimal according to a metrics; the possibilities
for its choices for the language D are “natural”, some
of possible metrics are also discussed in [1].

It is important to note that according to [2], [3], [5], the
solution of one of them automatically involves the solution of
the other. Moreover, it is easy to show that the description of
the polynomial-time algorithm for solving one of them will
give a description of a comparable algorithm for solving the
other.

ACKNOWLEDGMENT

We express our gratitude for some consultations to A. Ve-
rëvkin (Ulyanovsk State University, Russia).

REFERENCES

[1] Melnikov B., Vylitok A., and Melnikova E. Iterations of lan-
guages and finite automata. International Journal of Open In-
formation Technologies. 2017, vol. 5, no. 12, pp. 1–7. (in Russian,
http://injoit.org/index.php/j1/article/view/496)

[2] Melnikov B. The equality condition for infinite catenations of two sets of
finite words. International Journal of Foundations of Computer Science.
1993, vol. 4, no. 3, pp. 267–274.

[3] Melnikov B. Description of special submonoids of the global
supermonoid of the free monoid. News of higher educational
institutions. Mathematics. 2004, no. 3, pp. 46–56. (in Russian,
https://elibrary.ru/item.asp?id=9083702)

[4] Korabelshchikova S., and Melnikov B. Maximum prefix
codes and subclasses of the context-free language class.
Bulletin of Northern (Arctic) Federal University. Series:
Natural Sciences. 2015, no. 1, pp. 121–129. (in Russian,
https://elibrary.ru/item.asp?id=23141792)

[5] Korabelshchikova S., and Melnikov B. On the common root of elements
of the global supermonoid. Bulletin of Northern (Arctic) Federal
University. Series: Natural Sciences. 2016, no. 3, pp. 91–96. (in Russian,
https://elibrary.ru/item.asp?id=27126372)

[6] Salomaa A. Jewels of formal language theory. Computer Science Press,
Inc. (Maryland, USA), 1981, 157 p.

[7] Melnikov B. Some consequences of the equivalence condition
of unambiguous bracketed grammars. Bulletin of Moscow
University, ser. 15 (Moscow University Computational Mathematics
and Cybernetics). 1991, no. 3, pp. 51–53. (in Russian,
https://elibrary.ru/title_about.asp?id=8373)

[8] Dubasova O., and Melnikov B. About one extension of
CF-languages class. Programmirovanie (Programming and
Computer Software). 1995, no. 6, pp. 46–58. (in Russian,
https://elibrary.ru/title_about.asp?id=7966)

[9] Melnikov B., and Kashlakova E. Some grammatical structures
of programming languages as simple bracketed languages.
Informatica (Lithuania). 2000, vol. 11, no. 4, pp. 441–454.
(https://www.mii.lt/informatica/htm/INFO222.htm)

[10] Ginsburg S. The Mathematical Theory of Context-free Languages.
McGraw-Hill Ed. (N.Y., USA), 1966, 245 p.

[11] Stanevichene L. About one tool of context-free languages
research. Cybernetics. 1989, no. 4, pp. 135–136. (in Russian,
http://www.kibernetika.org/contents/89.doc)

[12] Gomozov A., and Stanevichene L. A generalization of regular ex-
pressions. Informatica (Lithuania). 1999, vol. 10, no. 1, pp. 27–44.
(https://www.mii.lt/informatica/htm/INFO140.htm)

[13] Meytus V. The decidability of the problem of equivalence
for deterministic push-down automata. Cybernetics and
system analysis. 1992, no. 5, pp. 20–45. (in Russian,
http://www.kibernetika.org/contents/92.doc)

[14] Sénizergues G. L(A)=L(B)? Decidability results from complete formal
systems. Theoretical Computer Science. 2001, vol. 251, no. 1–2, pp. 1–
166.

[15] Melnikov B. Some equivalence problems for free monoids and
for subclasses of the CF-grammars class. Number theoretic and
algebraic methods in computer science, Proceedings of the In-
ternational Conference, World Scientific Publ. 1995, pp. 125–137.
(https://doi.org/10.1142/9789814532532)

5

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no. 3, 2019

[16] Melnikov B. 2ω-finite automata and sets of obstructions
of their languages // The Korean Journal of Computational
and Applied Mathematics. 1999, vol. 6, no. 3, pp. 565–574.
(https://doi.org/10.1007/BF03009949)

[17] Melnikov B. On ω-languages of special billiards
Discrete Mathematics. 2002, vol. 14, no. 3, pp. 95–108.
(http://www.mathnet.ru/dm)

[18] Melnikov B., and Melnikova E. Some more on the billiard languages
and corresponding forbidden languages. Proceedings of International
Conference on Infinity in Logic & Computation. Cape Town. 2007,
pp. 35–36.

[19] Ufnarovskii V. Combinatorial and asymptotic methods in alge-
bra. Results of science and technology, ser. Modern Problems
of Mathematics, Algebra. 1990, vol. 6, pp. 5–177. (in Russian,
http://mi.mathnet.ru/intf160)

[20] Belov A., Borisenko V., and Latyshev V. Monomial algebras. Journal
of Mathematical Sciences, 1997, vol. 87, no. 3, pp. 3463–3575.

[21] Vylitok A. About building the graph of a push-down automaton. Bul-
letin of Moscow University, ser. 15 (Moscow University Computational
Mathematics and Cybernetics). 1996, no. 3, pp. 68–73. (in Russian,
https://elibrary.ru/title_about.asp?id=8373)

[22] Vylitok A., Zubova M., and Melnikov B. An extension of the class
of finite automata to specify the context-free languages. Bulletin
of Moscow University, ser. 15 (Moscow University Computational
Mathematics and Cybernetics). 2013, no. 1, pp. 39–45. (in Russian,
https://elibrary.ru/item.asp?id=18862999)

[23] Generalova T., Melnikov B., and Vylitok A. On the extension
of the finite automata class for context-free languages
specification. International Journal of Open Information
Technologies. 2018, vol. 6, no. 9, pp. 1–8. (in Russian,
http://injoit.org/index.php/j1/article/view/602)

[24] Brosalina A., and Melnikov B.. Commutation in global supermonoid
of free monoids. Informatica (Lithuania). 2000, vol. 11, no. 41,
pp. 353–370. (https://www.mii.lt/informatica/htm/
INFO220.htm)

[25] Birkhoff G., and Mak Lane S. A DServey of Modern Algebra. Macmil-
lan Publishing Co., Inc. (N.Y., USA), 1977, 500 p.

[26] Zyablitseva L., Korabelshchikova S., and Chesnokov A. Linear codes
correcting errors and their counting algorithms. Heuristic Algorithms
and Distributed Computing. 2014, vol. 1, no. 3, pp. 47–59. (in Russian,
https://elibrary.ru/item.asp?id=22376177).

Boris Feliksovich MELNIKOV,
Professor of Russian State Social University,
http://www.rgsu.net/,
email: bf-melnikov@yandex.ru,
mathnet.ru: personid=27967,
elibrary.ru: authorid=15715,
scopus.com: authorId=55954040300.

Svetlana Yuryevna KORABELSHCHIKOVA,
Associated Professor (Docent)
of Northern (Arctic) Federal University
named after M. V. Lomonosov, Russia,
https://narfu.ru/en/university/,
email: s.korabelsschikova@narfu.ru,
elibrary.ru: authorid=711810.

Vasily Nikolaevich DOLGOV,
Independent Researcher, Russia,
email: terenga74@mail.ru,
elibrary.ru: authorid=700000.

6

	Introduction
	Motivation: why do we consider this task?
	The formal problem setting and an example
	
	
	Why do not simple algorithms work?
	Conclusion. Some directionsfor further work
	References

