
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no.1, 2019

 115

Abstract— The subject of the article is the “coding style”

concept and the main approaches to detecting the individual

style of a programmer. The entire process of creating a

software product from this point of view and the main features

of programming style are analyzed. It emphasizes the relevance

and commercial significance of the problem in terms of product

support, plagiarism, work of a large developer’s community in

a single repository, an evolution of developer skills.

Computational stylometry issues, a possibility of using

programming paradigms as an additional factor of style

identification are considered. It offers the idea of creating a

software tool that allows to identify the style of the author who

wrote a particular program fragment and allows less

experienced developers to follow the rules accepted in the

major part of the repository and determined by coding style of

"experts", which leads the code to a uniform format that is

easier to maintain and make adjustments. Globally, this stage of

analyzing the original (and then the modified code) allows

improving the existing algorithms for automatic synthesis of

programs.

Keywords—coding style, programming paradigms,

computational stylometry, plagiarism, deanonymization.

I. INTRODUCTION

Nowadays, computer programs are developed, as a rule,

cooperatively by a large number of developers. There are

many services for hosting projects and their development,

the largest of which is Github. Every developer, whether

new or professional, has a unique programming style that

can change over time. Often, a team leader or a product

manager would like all developers to adhere to a certain

programming style in the project, which would make the

code more readable and improve teamwork. Requirements

for the source code can also be set at the company / unit

level (so-called style guide e.g.

https://google.github.io/styleguide/javaguide.html). Now

such control can be carried out, for example, by programs

like "linter". However, this approach is static and does not

respond to changes in the repository style, which, for

example, may arise due to the prevalence of the code share

written by a new team member. The second practical

question considered in this article is connected with the

Manuscript received 05.12.2018

Sergey Gorshkov is with Lomonosov Moscow State University (e-mail:

serggorsar@yandex.ru)

Maxim Nered is with Lomonosov Moscow State University (e-mail:

freepvps@gmail.com)

Eugene Ilyushin is with Lomonosov Moscow State University (e-mail:

eugene.ilyushin@gmail.com).

Dmitry Namiot is with Lomonosov Moscow State University (e-mail:

dnamiot@gmail.com).

definition of the code author. It is in demand in many areas

of business activities and law enforcement. Currently, a lot

of research is being carried out, solving the problem in

various ways, including methods of machine learning.

The research shows that about 80% of the software life

cycle cost comes from servicing the finished product due to

insufficient software quality. This may be connected to the

logical component and its implementation, as well as to

deeper problems that may not immediately be revealed, such

as code readability, documentation quality, clear traceability

of relationships in software, and so on. In many cases, the

only source of information about a software product is its

source code and the developer who wrote it. Adherence to

the coding style as one of the basic requirements for

software product development helps improve the quality of

the code.

Let's describe the terminology used in this area, highlight

the main features of the problems under consideration and

the available solutions.

II. PROGRAMMING STYLE AND EVOLUTION OF DEVELOPER

SKILLS

Programming (coding) style is an intuitive and seemingly

elusive concept which shows the style of writing code. This

is a purely individual characteristic, it is easily recognized

"by eye", but it is rather difficult to make an assay of the

problem. The goal of adhering to programming style is to

make the program understandable, which makes it easy to

work with, but individual programming style that is different

from that of other team members often deteriorates the

readability and understanding of the source code. Obviously,

writing comments, use of meaningful names of code

elements and satisfying the basic requirements for writing

code in the language used, which are embedded in many

modern IDEs, can be attributed to the “good” coding style.

The concept of a coding standard differs from the concept

of programming style: the former is a set of practices

recognized to be successful in the sector that involve many

recommendations for the development of programming

code. There are studies confirming that adherence to coding

standards in software development can improve teamwork,

reduce errors in a software product, and improve code

quality. Working in accordance with coding standards, team

members understand their colleagues' programs more easily

and eliminate errors in them [1]. Fundamentally, standards

for writing code are nothing more than the evolution of

programming styles. When a programming style becomes

Using Machine Learning Methods to Establish

Program Authorship

Sergey Gorshkov, Maxim Nered, Eugene Ilyushin, Dmitry Namiot

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no.1, 2019

 116

popular and gains public acceptance, it rises to coding

standards.

An important point is an observation that the

programming style is closely related to a developer's skills

progress. As the level grows from beginner to lead

developer, the quality of the code written by him will

increase. This evolution can be divided into three stages.

Stage 1. These are, as a rule, newcomers to the

profession, who do not know acknowledged coding

standards and do not have their own style, they write

programs according to their idea of style, so source code

written by them is often illogical and has low readability.

Stage 2. Developers have an individual programming

style based mainly on coding standards.

Stage 3. Lead developers know the coding standards,

have their own ideas about a style of writing code, can use

their own insights, for example, for working with files,

handling database connections, managing virtual memory,

etc., to make the programs more efficient, reliable and

portable from their point of view. Such divergence, in this

case, we can consider as amendments to the standards, and it

is necessary to distinguish such anomalies from beginners'

failures in writing code.

A programming style can be defined as an interpretation

by a programmer or a company [2] of a set of rules and their

use for writing source code to achieve the goal. A set of

rules applicable to writing source code can be divided into

four main areas [3]:

1. General programming practices - rules and

recommendations regarding methodology and

language that affect the source code.

2. Typographic styles - rules that affect only the layout

of the source code and the use of comments, but not

the execution of the program.

3. Сontrol structure styles - rules that affect the use of

algorithms and their implementation, and control

constructs.

4. Information structure styles - rules affecting data

structure, flows, data storage and operations.

III. STYLOMETRY AND AUTHORSHIP IDENTIFICATION OF

SOURCE CODE

Stylometry is a statistical analysis of style that

complements the traditional methods of literary analysis.

Stylometry usually includes studies that use style as an

indicator, for example, the author’s stylistic peculiarities as

proof of his authorship or certain changes in the author’s

style as an indicator of the works chronology. Equally

important are also statistics that are purely descriptive. An

overwhelmingly important feature of the programming style

is that the style is unique to a person, like his fingerprint or

retina. This is called the hypothesis of human styloma, which

suggests that authors can be distinguished by measuring the

specific properties of their works, called stylomas [4, 5].

A perspective area of stylometry is computational

stylometry. It describes and explains the cause-and-effect

relationship between the psychological and social properties

of the authors, on the one hand, and their style of writing, on

the other. The results of studies in this field of science can

be used to develop systems that generate text in a particular

style, or systems that recognize the identity of the authors or

some of their personal traits, using the text written by them.

This field will be considered further.

Computational stylometry is used within natural language

processing (NLP) tasks as one of three text comprehension

levels. The purpose of text comprehension is to extract

knowledge from the text and to present it in a format that is

reusable. Over the past decade, NLP has made significant

progress by switching to statistical and machine learning

methods in research and increased interest due to

commercial applicability (Apple's SIRI, Yandex's Alice,

Amazon's Alexa, Google assistant are examples of recent

most advanced commercial NLP applications). Three

categories of knowledge that can be extracted from text [4]

are as follows:

1. Objective knowledge (answer to special questions:

who, what, where, when, ...)

2. Subjective knowledge (who has what opinion and to

what extent)

3. Some metadata (what we can extract from the text

separately from its content, mainly about its

author).

1. Computational stylometry solves issues falling in the

last category. We describe a set of basic tasks

solved by the methods described.

Firstly, it is the programmer’s deanonymization task. It is

statement will be as follows - some analyst is interested in

the identification of an anonymous programmer. This could

be a privacy concern for open source authors who want to

remain anonymous.

Secondly, it is the detection of ghostwriting (a situation in

which an author writes texts, or in our case, programs, for

another person, and at the same time his authorship is not

mentioned anywhere). Ghostwriting detection is associated

with traditional plagiarism detection. There are many ready-

made commercial solutions to this issue, such as MOSS

([22]), JPlag ([23]) and Sherlock ([24]).

Thirdly, it is legal expertise of software. In this case, an

analyst collects many candidate programmers on the basis of

previously obtained malware samples or code repositories.

Fourthly, it is copyright study. Borrowing code often

leads to copyright disputes. Informal mechanisms for hiring

programmers are widespread, and in the absence of a written

contract, someone may require to be acknowledged as the

author of a part of the code after it has been written for hire

and sent.

An example of a finished software product is the Smart

Formatter [6], which analyzes the source code quality from

three different points of view: indentation style, naming style

and use of comments and their frequency. Indentation style

is studied by analyzing for each grammar rule the relative

position of each terminal or nonterminal that makes up a rule

relative to the previous token. Indentation rule is obtained by

applying descriptive statistics (average or median) on the

collected positions for each instance of the grammar rule. To

process comments, the tool analyzes their frequency and

extracts source code files with a comment frequency below a

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no.1, 2019

 117

predetermined threshold.

IV. BASIC APPROACHES TO PROBLEM SOLVING

Many software products that solve problems associated

with the style of writing code are based on the use of various

methods of machine learning. Traditional methodology for

obtaining software for the task, used in this area, usually

involves the following steps:

1. Extracting software metrics that could define an

author’s style

2. Filtering metrics and highlighting the really

significant ones

3. Choosing a machine learning model for classifying

and training the model using selected metrics

4. The application of the model is based on the

selection of an already filtered set of metrics.

In most studies, priority is given either to the first stage,

related to the choice of metrics (steps 1 and 2), or to the

second one (step 3), which is related to the model choice.

This paper focuses on the first step.

In order to apply the machine learning methods, it is

necessary to distinguish a set of features - characteristics

(explanatory variables, attributes) of the source code, for

which we assume that they can affect the identification of the

author. Of course, it is necessary to consider many factors, to

be able to evaluate their contribution, pairwise correlation,

the problem of retraining. We can identify the main

directions of the characteristics search as follows:

1. Lexical metrics. Source code analysis by highlighting

metrics associated with lexical features: keywords

of a language, functions, macros, comments,

preprocessor directives, etc. The occurrence

frequency of these structures, their average, and

total length, the number of unique elements, etc.

can be considered as the metrics. In addition to the

general selection of entities, their features, for

example, their type can be used. Thus, the text is

converted into a sequence of primitive objects -

lexical tokens. On the ground of these objects, we

can build a model that can take into account the

frequency of encountered tokens, their context,

correlations, etc. This is used, for example, in the

papers [7, 8].

2. Layout metrics and style metrics. The general layout

and characteristics of syntactic constructions are

analyzed as well as the use of such language

elements as spaces and tabs, naming style of

variables, etc. For example, it may be the

distribution of lengths and numbers, as well as their

standard deviations, strings, characters, numeric

literals, standardized to the characteristics of strings

and files; metrics related to the number of leading

spaces, the use of spaces / tabs, underscores,

semicolons, commas, etc. This is used, for example,

in the papers [9, 10].

3. Styles of the control and information structure - the

use of various algorithms and their implementation,

control constructs, data structures. For example,

organizing cyclical methods, using classes /

functions, branching, using equivalent tools for

algorithm implementation. This especially affects

languages with a large amount of syntactic sugar,

for example, Perl with its "There’s more than one

way to do it". Differences in the use of basic

concepts - records (data structures: groups of

references to data elements with indexed access to

each element), lexically closed closures,

independence (sequential / parallel), and named

states are also a programmer's distinctive feature,

inspired by a programming language, but however,

providing considerable variation. This is used, for

example, in [11].

4. For analyzing the structure, an abstract syntactic tree

is often used, which is an intermediate

representation of the program between a parse tree

and actual data structure, which makes it easier to

distinguish such features as location of control

structures, loops, nesting levels of operators and

operands of various types, branching, number of

function parameters and other. This is used, for

example, in [12, 13, 14].

5. N-gram analysis of the original text or bytecode. In

this approach, n consecutive elements are analyzed

as well as the occurrence frequency of these

sequences. As a rule, a certain number of most

frequently encountered n-grams is allocated for

each author, and when analyzing programs, the

overlap size of the most frequently encountered n-

grams sets for the candidates and the program are

evaluated. Context analysis of each of the n-grams

can also be used. This is used, for example, in [15,

16].

6. Project architecture is decomposition of a system

into its implementation modules and dependencies

between them. The indicators obtained from

revision history, as a result of which the writing

style of various parts of a project was mixed, will

be quite effective and useful. In papers [17] and

[18], it was shown that the number of change

metrics are important for files, where joint changes

were carried out in one and several architectural

modules. Suddenly, the metric of the number of

strings in a file and in the implementation

components - functions, classes, etc. - becomes one

of the most significant.

7. Special attention is to be paid to a rather unexplored

issue, which looks very promising due to its global

nature. It is programming paradigms where you can

observe how a programmer uses certain concepts -

basic elements in a given hierarchy. Each concept

implements a certain language functional, and a set

of concepts defines a common paradigm. For

example, discrete synchronous programming is best

for reactive problems, i.e. problems which consist

of reactions to sequences of external events. A

proper understanding of concepts can help improve

a programming style even in languages that do not

directly support them, just like object-oriented

programming is possible in C language with correct

programmer's attitude. Program states are very

important - they can be named and unnamed,

deterministic and non-deterministic, and sequential

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no.1, 2019

 118

or parallel. The least expressive combination is the

functional programming monads, the most

expressive is object-oriented programming with

support of messages exchange and shared

resources. Many languages support two or even

three paradigms. The first paradigm is chosen for

the problem that is most often language-oriented.

The second paradigm is chosen to support

abstraction and modularity and is used when

writing large programs. There can be three

complementary paradigms, for example, in SQL:

relational programming mechanism for logical

queries to databases and transaction interface for

parallel database updates + host language that

supports OOP. How much a programmer uses the

concepts of each of these paradigms will certainly

determine his style. For example in relation to SQL,

there are dialects with code inserts in other

programming languages, there are multiple tools

based on different aspects, which allow writing

code with methods and extensions of the language

itself.

Many groups of metrics (especially 2 and 3) depend on a

programming language, therefore they cannot be recognized

as universal. In addition, many programming features are

subject to style agreements, for example, PEP8 in Python,

embedded in many IDEs.

As a result of metrics allocation in various ways, there

may be too many indicators that need to be filtered. Their

selection is a nontrivial process and usually involves setting

thresholds to eliminate the indicators that have little effect

on the classification model. Usually, this happens as follows:

the metrics inherent to a relatively small group of authors are

selected, considering that they define their style and are not

inherent to other programmers. For this, Shannon

informational entropy is often used (a measure of uncertainty

for the metric and the author). Individual consistency is

calculated - that is, how randomly the code determines the

metrics for programs of a particular developer, and then

population consistency - for all developers' programs. After

that, we minimize the ratio of individual entropy to the

group one, because low entropy indicates that there are very

few cases of using this metric and it is quite unique for

developers. Thus, there is a selection of metrics and their top

(a certain number of metrics for which the entropy-based

figure is minimal) is used as features for further learning.

It is beyond argument that in studies not one type of

features is usually used, but several, and, as a rule, it is their

nature that will determine the machine learning method that

will be used to solve an application task. In studies, for

example, the method of support vectors ([11]), the Bayesian

classifier ([19]), neural networks ([20]), and various

combinations are common.

The accuracy of the classification depends on the set of

selected characteristics and the method of machine learning.

The papers show that with the increase in the number of

candidates, the prediction accuracy decreases. Let us take as

an example the results of some studies, where testing is

carried out on the programs of the same authors, the model

is trained on:

 Tab. 1. Training methods and classification accuracy

V. FURTHER RESEARCH

In future, the work is planned on methods of style

identifying with the help of tokenization and the use of

various machine learning methods. Undoubtedly, there are

still a lot of open issues in programming style study and

identification of code authors. In the following steps, it is

intended to explore the possibility of using the taxonomy of

programming paradigms to classify source code and

determine the style of a whole project. It is also planned to

use combinations of other machine learning methods for the

target task, to consider more complex composite metrics. It

is planned to develop a product that would work for almost

any source text different only at the tokenization stage, be it

a literary text or a program.

Another possible trend is connected with detailed study of

using the model for classifying code in various programming

languages and use of syntax features of these languages. An

interesting area of research is the portability of the style of

one developer to different programming languages, both

related and using fundamentally different paradigms with

tokenization dependent on the language syntax.

VI. CONCLUSION

In this article, an overview of the areas in which the key

role is played by programming style was given,

computational stylometry and coding standards were

considered, as well as their characteristics and correlation

with the style. The connection of the programming style and

work with large repositories was considered, the evolution of

developers' skills and general requirements for a particular

style were highlighted. The traditional approach in tasks of

this type to determining the authorship of a program was

considered - the steps which form a tool for this task were

described. Various approaches to allocation of features for

machine learning were discussed in detail: these are lexical

metrics, location / style metrics, control and information

structure style metrics, use of abstract syntax tree, n-gram

Study Feature

selection

method

Machine

learning

method

Number

of

authors

Accuracy

[16] n-grams – 30 97%

[19] Lexical/

layout/

style

Voting

Feature

Interval

12 76%

[20] AST Random

Forest

70 73%

[20] AST Neural

network

70 89%

[21] AST+

Lexical/

layout/

style

Neural

network

250 98%

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no.1, 2019

 119

analysis, project architecture research and use of

programming paradigms. The results of some studies using a

different set of characteristics and machine learning models

were also presented. The final section presents areas of

future research.

REFERENCES

[1] Y. Wang, B. Zheng, H. Huang. “Complying with Coding Standards

or Retaining Programming Style” // Journal of Software Engineering

and Applications, pp. 1:88-91, 2008

[2] A. Mohan, N. Gold. “Programming Style Changes in Evolving

Source Code” // IEEE, 2004

[3] P. Oman, C. Cook. “A taxonomy for programming style” // 18th

ACM Computer Science Conference Proceedings, pp. 244-247, 1990

[4] D. I. Holmes. “Stylometry” // Encyclopedia of Statistical Sciences,

2006

[5] W. Daelemans. “Explanation in Computational Stylometry” //

Springer: International Conference on Intelligent Text Processing and

Computational Linguistics, pp 451-462, 2013

[6] F. Corbo, C. Del Grosso, M. Di Penta. “Smart Formatter: Learning

Coding Style from Existing Source Code” // Software Maintenance.

IEEE International Conf. 2007. Pp. 525-526.

[7] H. Ding, M. Samadzadeh. “Extraction of java program fingerprints

for software authorship identification” // Journal of Systems and

Software 72, 1 (2004), 49–57.

[8] J. Hayes, J. Offutt. “Recognizing authors: an examination of the

consistent programmer hypothesis” // Journal of Software Testing,

Verification and Reliability 20, 4 (2010), 329–356.

[9] A. Gray, P. Sallis, S. MacDonell. “Software forensics: Extending

authorship analysis techniques to computer programs” // Information

Science Discussion Papers Series No. 97/14

[10] E. Spafford, S. Weeber. “Software forensics: Can we track code to its

authors?” // Computers & Security 12, 6 (1993), 585–595.

[11] B. Pellin. “Using classification techniques to determine source code

authorship”. // White Paper: Department of Computer Science,

University of Wisconsin (2000).

[12] D. Yu, X. Peng, W. Zhao. “Automatic refactoring method of cloned

code using abstract syntax tree and static analysis” // Journal of

Chinese Computer Systems 30(9), 1752–1760 (2009)

[13] I. Baxter, A. Yahin, L. Moura, M. Sant’Anna, L. Bier. “Clone

detection using abstract syntax trees”. // Software Maintenance, 1998.

Proceedings., International Conference on. pp. 368–377. IEEE (1998)

[14] F. Lazar, O. Banias. “Clone detection algorithm based on the abstract

syntax tree approach” // Applied Computational Intelligence and

Informatics (SACI), 2014 IEEE 9th International Symposium on. pp.

73–78. IEEE (2014)

[15] G. Frantzeskou, S. MacDonell, E. Stamatatos, S. Gritzalis.

“Examining the significance of high-level programming features in

source code author classification”. // Journal of Systems and Software

81, 3 (2008), 447–460.

[16] G. Frantzeskou, E. Stamatatos, S. Gritzalis, S. Katsikas. “Effective

identification of source code authors using byte-level information” //

Proceedings of the 28th International Conference on Software

Engineering (2006), ACM, pp. 893–896.

[17] E. Kouroshfar, M. Mirakhorli, H. Bagheri, L. Xiao, S. Malek and Y.

Cai. “A Study on the Role of Software Architecture in the Evolution

and Quality of Software”. // Proceedings of the 12th Working

Conference on Mining Software Repositories, (2015) 246-257

[18] E. Fernandes, J. Oliveira, G. Vale, T. Paiva, and E. Figueiredo. “A

review-based comparative study of bad smell detection tools” //

Proceedings of the 20th International Conference on Evaluation and

Assessment in Software Engineering, ACM, 2016, p. 18.

[19] J. Kothari, M. Shevertalov, E. Stehle, and S. Mancoridis. “A

probabilistic approach to source code authorship identification”. //

4th International Conference on Information technology, IEEE

Conference Publication, 2007.

[20] B. Alsulami, E. Dauber, R. Harang, S. Mancoridis, R. Greenstadt.

“Source Code Authorship Attribution Using Long Short-Term

Memory Based Networks”. // Proceedings of the 22nd European

Symposium on Research in Computer Security, Oslo, Norway, 2017,

pp. 65–82.

[21] A. Caliskan-Islam, R. Harang, A. Li, A. Narayanan, C. Voss, F.

Yamaguchi, R. Greenstadt “De-anonymizing Programmers via Code

Stylometry” // Proceedings of the 24th Usenix Security Symposium

(2015)

[22] A System for Detecting Software Similarity

http://theory.stanford.edu/~aiken/moss/ Retrieved: Dec, 2018

[23] JPlag Detecting Software Plagiarism https://jplag.ipd.kit.edu

Retrieved: Dec, 2018

[24] The BOSS Online Submission System

https://www.dcs.warwick.ac.uk/boss/ Retrieved: Dec, 2018

