
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 6, no. 9, 2018

On the problem of vertex optimization
of bracketed automata

T. V. Generalova, B. F. Melnikov, A. A. Vylitok

Abstract—A new formalism for the specification of context-
free languages is considered.

In this formalism, the application of an auxiliary alphabet
and the imposition of additional conditions make it possible
to obtain an extension of the class of nondeterministic finite
automata. This approach allows receiving a mechanism that
recognizes context-free languages.

Despite the fact that we define the class of context-free
languages, this formalism is similar to the nondeterministic
finite automata. This circumstance allows using classic algo-
rithms of the equivalent transformation of nondeterministic
finite automata for objects of formalism that specifies the
context-free languages.

As such a formalism, automata of a special kind, so-called
bracketed automata, are considered. We examine the algorithm
for constructing a bracketed automaton according to the given
context-free grammar. Then we give an example of a context-
free grammar with iterations for the model of arithmetic
expressions.

Also, we consider some equivalent transformations of brack-
eted automata. We represent a new special alphabet and prove
that on the basis of the alphabet, for each bracketed automaton
the usual nondeterministic finite automaton can be constructed.
Vise versa, for each nondeterministic finite automaton over a
new alphabet, it is possible to construct an equivalent bracketed
automaton.

Everything done in the paper makes it possible to apply
various algorithms of equivalent transformations of nondeter-
ministic finite automata, such as constructing of a minimal
automaton, universal automaton, etc., and obtain objects of
the considered formalism which is more acceptable in terms of
some characteristics, for example, with fewer numbers of the
vertices or the edges.

We give an example that shows that with a given transfor-
mation it is possible to reduce the number of vertices of the
automaton, but it is not always possible to obtain an automaton
with a minimum number of vertices.

Keywords—nondeterministic finite automata, context-free
languages, the extension of nondeterministic automata, algo-
rithms for equivalent transformation.

I. INTRODUCTION AND MOTIVATION

There exist a lot of formal systems for describing context-
free languages. Along with systems of the generative type,
for example, a grammar, there are recognition systems that
are algorithms, possibly in the form of an automaton.

Context-free languages are specified by pushdown au-
tomata [1]. There also exist some other approaches for
the description of the languages. For instance, a graphical
method of the language representation is considered in [2].

Received 5.08.2018.
Tatiana V. Generalova, Lomonosov Moscow State University (email:

tanya.generalova@gmail.com).
Boris F. Melnikov, Russian State Social University (email: bf-melnikov@

yandex.ru).
Alexey A. Vylitok, Lomonosov Moscow State University (email: vylitok@

cs.msu.su).

We also mention the well-known book [3] and a series of
the papers [4], [5], [6].

In this paper, we consider a new formalism for describing
context-free languages [7]. On the one hand, it is an extension
of the class of nondeterministic finite automata (NFA).

On the other hand, it can be considered as nondeterministic
finite automaton over a special alphabet. Each element of this
alphabet symbolizes a pair of brackets: the opening bracket
and the closing one. We suppose that the sets of opening and
closing brackets are not intersected.

In [8], a formalism for representing a special extension
of finite automata was introduced. They were called gener-
alized nondeterministic finite pseudo-automata. Unlike usual
automata constructions, these automata do not indicate the
concrete paths for defining the considered word of the given
regular languages. This formalism gives only an algorithm
for answering the question, whether or not the given word
belongs to the considered language.

The extensions of the class of finite automata usually
define the same class of regular languages. We can say
that non-determinism was the first such extension and was
considered firstly in terms of our approach, apparently, in [9].
We mention the works of one of the authors of this paper
[10], [11] for other extensions of the class of finite automata.

However, we note that these extensions of the class of the
automata do not expand the class of the languages, they
define. This class remains the class of regular languages. In
our case, our extension of the class of finite automata gives
an extension of the class of corresponding languages, and
the class of context-free languages is obtained.

We can get the context-free language due to only some
of the words accepting by the automaton construct the total
language.

Thus, everything done in the paper makes it possible to
apply various algorithms of equivalent transformations of
nondeterministic finite automata, such as:
• constructing the equivalent automaton with the minimal

possible number of states (simply so-called minimal
automaton);

• constructing the equivalent automaton with the minimal
possible number of edges;

• constructing the equivalent universal automaton;
• constructing an automaton according to the basis one;
• etc.,

and obtain in this way objects of the formalism which
are more acceptable in terms of some characteristics, for
example, with fewer numbers of vertices, edges, etc.

In [13], it is shown how by means of successive trans-
formations it is possible to get an equivalent for any given
automaton for a given regular language. This is possible by
virtue of the existence of a canonical finite automaton, which

1

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 6, no. 9, 2018

in turn is equivalent to the automata considered (participating
in the transformation).

As algorithms for the equivalent transformation of the
nondeterministic finite automaton, algorithms for combining
several states into one are considered, as well as an algorithm
for adding loops. The latter algorithm makes it possible
to add loops that were not present in the original finite
automaton, but are present in the equivalent basis one.

The algorithms of equivalent transformations of nondeter-
ministic finite automata mentioned by us are described by
various authors, including the author of this paper. Among
many publications on this topic, we mention those that, from
our point of view, are most interesting and are related to the
questions considered in this paper: ours [10] – [15], and the
publication of other authors [16], [17], [18].

The structure of this paper is as follows. In Section II,
we briefly give the notion of the nondeterministic finite
automaton: ordinary and extended. Besides, we recall the
notion of D-graphs and perfect pushdown automata. (The
concept of an extended pushdown automaton is used to
define the concept of a perfect pushdown automaton.) The
idea of designing D-graph was to represent the context-free
languages graphically.

In Section III, we define bracketed automata over a special
alphabet and their languages. Then we prove the theorem that
the language recognized by a bracketed automaton is always
a context-free language.

In Section IV, we present one of the possible methods of
constructing bracketed automaton according to a context-free
grammar. In particular, we present an algorithm for construct-
ing bracketed automaton according to a given context-free
grammar. Then we show the corresponding example of the
application of such an algorithm.

The example of the equivalent transformation of bracketed
automata is considered in Section V. (Language descriptions
are called equivalent if they specify the same language.)

Such transformations show that for each bracketed au-
tomaton, on the base on the new alphabet the equivalent
ordinary nondeterministic finite automaton can be built. Vise
versa, for each nondeterministic finite automaton over a new
alphabet, it is possible to construct an equivalent bracketed
automaton.

In some cases with the help of such transformations, we
can obtain a finite automaton with the minimum possible
number of vertices.

We study this transformation more thoroughly and offer
an example in which we show that this transformation does
not always allow to obtain a minimal bracketed automaton.
Thus, in the most general case, this transformation cannot be
considered as an algorithm for minimization of the bracketed
automata.

In Conclusion (Section VI), we briefly summarize the
results of the paper and formulate the main directions for
further research on this topic.

II. PRELIMINARIES

A. Nondeterministic finite automaton: classical definitions
and additional information

We shall use the notation from [14] for nondeterministic
finite automata (NFA for short).

Definition 1: [14] Let

K = (Q,Σ, δ, S, F) (1)

be a nondeterministic finite automaton that defines language,
denoted L(K), where
• Q is a finite set of states,
• S is a set of the initial states of the finite state control,
S ⊆ Q,

• F is a set of the final states, F ⊆ Q, and
• δ is a transition function

δ : Q× (Σ ∪ {ε})→ P(Q),

where P(Q) is a finite subset of Q. Remark, that we
shall admit ε-transitions. �

We get all possible next states of automaton due to state
transition function according to the given “current” state and
“current” input symbol [1]. The NFA in the current state goes
into each of its possible states in accordance with the read
symbol. It is assumed that an automaton accepts an input
string if any of its parallel instances reaches an accepting
state.

We shall also use another method for specifying the
transition function of the finite automata in addition to the
described one. For this method, we shall define transition
function

γ : Q×Q→ P(Σ ∪ {ε}) ,

and condition γ(q, r) 3 a is fulfilled if and only if

δ(q, a) 3 r [11].

We assume that q, r ∈ Q and a ∈ Σ ∪ {ε}.

B. A nondeterministic pushdown automaton and an extended
one

Definition 2: [1] A nondeterministic pushdown automata
is defined by a 7-tuple

M = (Q,Σ,Γ, δ, q0, z, F)
where
• Q is a finite set of states,
• Σ is the input alphabet,
• Γ is a finite set of symbols,
• δ is a transition function

δ : Q× (Σ ∪ {ε}) ∈ Γ→ Q× Γ∗

• q0 ∈ Q is the initial state,
• z ∈ Γ is the stack start symbol, and
• F ⊆ Q is the set of final states. �

Definition 3: [1] We shall represent a pushdown list as a
string of symbols Γ∗ with the topmost symbol written on the
left. �

Definition 4: [1] Let an extended pushdown automaton
(PDA for short) be a 7-tuple

P = (Q,Σ,Γ, δ, q0, Z0, F),
where δ is a mapping from a finite subset of

Q× (Σ ∪ {ε})× Γ∗

to the finite subsets of Q × Γ∗ and all other symbols have
the same meaning as before. �

We give some more information from [1].

Definition 5: [1] A configuration of the automaton is a
triple

2

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 6, no. 9, 2018

(q, w, α) ∈ Q× Σ∗ × Γ∗,
where
• q represents a current state of the finite control,
• w represents the unused portion of the input; the first

symbol of w is under the input head; if w = ε, then it
is assumed that all of the input tapes have been read,

• α represents the contents of the pushdown list; the
leftmost symbol of α is the topmost pushdown symbol;
if α = ε, then the pushdown list is assumed to be empty.
�

A move by pushdown automaton will be represented by the
binary relation ` on configurations. For ordinary pushdown
automaton, we write

(q, aw, Zα) ` (q′, w, γα) (2)

if δ(q, a, Z) contains (q′, γ) for any q ∈ Q, a ∈ Σ ∪ {ε},
w ∈ Σ∗, Z ∈ Γ, and α ∈ Γ∗.

A configuration of the extended pushdown automaton is
as before and a move by PDA will be represented as

(q, aw, αγ) ` (q′, w, βγ) (3)

if δ(q, a, α) contains (q′, β) for q ∈ Q, a ∈ Σ ∪ {ε}, and
α ∈ Γ∗. In this move, the string α is replaced by the string
β on top of the pushdown list. In our further considerations,
we shall consider extended pushdown automata. �

Let us suppose that current state of finite control P is q,
the current input symbol is a, and the finite-length string
on top of the pushdown list is α. If a 6= ε, then (3) states
that in such configuration P may go into a configuration in
which the finite control is now in state q′, the input head has
been shifted one square to the right, and the topmost string
α on the pushdown list has been replaced by the string β of
pushdown list symbols.

An initial configuration of P is one of the form (q0, w, Z0)
for some w ∈ Σ∗. That is, the finite state control is in the
initial state, the input contains the string to be recognized,
and the pushdown list contains only the symbol Z0. A final
configuration is one of the form (q, ε, α), where

q ∈ F , α ∈ Γ∗.

Definition 6: [1] We say that a string w ∈ Σ∗ is accepted
by P if

(q, w, Z0)
∗
` (q, ε, α)

for some q ∈ F and α ∈ Γ∗.
The language defined by PDA P, is

L(P) = {w | (q0, w, Z)
∗
` (q, ε, α), q ∈ F, α ∈ Γ∗}. �

Extended pushdown automata can replace a finite-length
string of symbols on top of the pushdown list by some other
finite-length string in a single move. The original version of
PDA could replace only the topmost symbol on the top of
the pushdown list on a given move.

Unlike an ordinary PDA, an extended pushdown automa-
ton is capable of making moves when its pushdown list is
empty.

C. D-graphs

The notion of D-graphs was designed with the purpose
to represent the context-free languages graphically [5]. We

introduce auxiliary notions and notations. Let Σ(and Σ) be
non-intersecting alphabets and there is a bijection

φ : Σ(→ Σ).

We shall denote a nonempty set P ⊆ Σ(× Σ) as D-set.
We shall call the language generated by the grammar

S → Λ | aS b S, (a, b) ∈ P,
as D-language.

Suppose that for any D-set P ⊆ Σ(×Σ) records Left(P)
and Right(P) denote the sets

{a ∈ Σ(| ∃ b ∈ Σ), (a, b) ∈ P}
and

{b ∈ Σ) | ∃ a ∈ Σ(, (a, b) ∈ P},
respectively.

Definition 7: [5] We define D-graph as follows:
D = (V,Σ,P, λ, P0, F),

where:
• V is a finite set of vertices,
• Σ is an alphabet of marks of the edges,
• P is a D-set, union E(D) = Left(P) ∪ Right(P) is a

set of oriented loaded edges,
• P0 ⊆ V is the initial vertex,
• F ⊆ V is the set of finite vertices, and
• λ : E(D) → V × (Σ ∪ {ε}) × V is the edge position

function in D-graph. �

We denote some edge in D-graph as π. The elements of
tuple

(P, a,Q) ∈ V × (Σ ∪ {ε})× V,
(P, a,Q) = λ(π),

where
• P is the initial vertex,
• a is the mark, and
• Q is the finite vertex.

We denote ω(π) as edge mark, ω(π) = a.

Definition 8: We define the edge mark notion recursively:
edge mark of empty (trivial) route is empty. For the route
Tπ, where
• π ∈ E(D)
• λ(π) = (P, a,Q) for some

– P,Q ∈ V
– a ∈ Σ ∪ {ε},

edge is ω(Tπ) = ω(T)π.
For edge π:
• beg(π) is the initial vertex of the edge, beg(π) = P ,
• end(π) is the finite vertex of the edge, end(π) = Q. �

We consider the example of D-graph (Fig. 1):

D1 = ({a, b}, {P,Q}, {(1, 2), (1, 3)}, λ, P, {Q}),
where

λ(1) = P aP, λ(2) = P bQ, λ(3) = QbQ.

P

a

1

Q

b

b

3

2

Fig. 1. An example of D-graph.

3

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 6, no. 9, 2018

D. Perfect pushdown automaton

Definition 9: [6] Pushdown automaton is a tuple
M = (Σ,K,Γ, Z0, δ, p0, F),

where
• Σ is a finite input alphabet,
• K is a finite set of states,
• Γ is a finite alphabet of pushdown list symbols,
• Z0 is the symbol that appears initially on the pushdown

list (the start symbol),
• p0 is the initial state of the finite control,
• F ⊆ K is the finite set of final states,
• δ ⊆ K × (Σ∪ {ε})× Γ× K × Γ∗) is the finite set of

commands. �

The notion of the command is convenient for comparing
pushdown automata with D-graphs.

The language L(M) accepted by the automaton is deter-
mined using the concept of the configuration and the binary
relationship of attainability, given on the set of configura-
tions.

We shall assume that

p, q ∈ K, a ∈ Σ ∪ {ε}, X, Z ∈ Γ, γ ∈ Γ∗.

The command is denoted by a record (p, a, Z)→ (q, γ).
Let

p ∈ K, x, y ∈ Σ∗, γ ∈ Γ∗,
((p0, x, Z0), (p, y, γ)) ∈ �∗M .

Then we call the triple (p, y, γ) the configuration of the
pushdown automaton. The configuration (p0, x, Z0) is called
the initial configuration, the configuration (p, ε, γ), where
p ∈ F , is the final one.

The language can be defined by the formula

L(M) = {x ∈ Σ∗ | ∃ (p ∈ F, γ ∈ Γ∗)
(p0, x, Z0) �∗M (p, ε, γ)}.

Now we introduce the notion of a perfect pushdown
automaton.

Definition 10: [6] Let the pushdown automaton satisfies
the following conditions:
• the trace of any command is +X or −X for some X ∈

Γ,
• a configuration has the form (p, x, Z0γ), where Γ ∈

(Γ\{Z0}),
• the final configuration has the form (f, ε, Z0), f ∈ F .

Then we call the automaton perfect. �

The following lemma is used in further consideration.

Lemma 1: [6] For a pushdown automaton M , there exists
a perfect pushdown automaton M ′ such that

L(M) = L(M ′). �

In [6] for perfect pushdown automaton some following
notions are introduced: a memory of configuration of au-
tomaton, a concept of computation over memory, a mark of
the calculation, a trace of the calculation, a final memory,
and a length of calculation.

Also, the concept of a route is introduced. Let (p,+Z)
be the initial memory of some empty route. Then the pair
(p, Z) is the vertex of the automaton (and the route). If p is
the final state, then the vertex (p, Z) is said to be final. The
pair (p0, Z0) is called the input vertex.

III. BRACKETED AUTOMATA

In this section, we define bracketed automata and their lan-
guages. After that, we prove that the language recognized by
the bracketed automaton is always a context-free language.

A. Special automata for accepting context-free languages

For every n from set N0, we shall consider the sets

N(n) = { 1, 2, . . . , n−1, n }

and

Z(n) = {−n,−(n−1), . . . ,−2,−1, 0, 1, 2, . . . , n−1, n } .

Each element i of N(n) symbolizes i-numbered pair of
brackets. Also i symbolizes i-numbered opening bracket, and
−i denotes corresponding closing bracket.

Sometimes, we shall consider the set Z(n) as the alphabet
containing 2n+1 symbols, i.e. Σ(n)

∗, and, therefore, we shall
consider words and languages over Z(n).

For example, we can say that

4 0 4 −4 3 −3 −4 0 3 −3 0 (4)

is a word over Z(17).

Definition 11: For given n ≥ 0, we define language
[Z(n)

∗]. We call it the language matched by brackets and
every word of this language is a word matched by brackets.

We define the word matched by brackets recursively:
• ε and 0 are words matched by brackets;
• if w and v are words matched by brackets, then u = wv

is also word matched by brackets;
• if w is a word matched by brackets, i ∈ N(n), then we

denoted u a word matched by brackets, and
u = iw − i;

• other word is not word matched by brackets.
The word v ∈ [Z(n)

∗] is called matched prefix if it is a prefix
of the word u ∈ [Z(n)

∗]. �

Let us comment on this definition. We get a new word
matched by brackets from the existing one by putting the
latter in brackets and (or) assigning to it another word
matched by brackets. For example, the word (4) is word
matched by brackets.

Definition 12: We define a bracketed automaton B as
follows:

B = (Q,Σ, γζ, S, F, n), (5)

where
• Q is a finite set of states,
• Σ is a given alphabet,
• S is a set of initial states of finite state control,
• F is a set of final states of Q,
• n ∈ N0 defines the bracket set Z(n), and
• γζ is a transition function of the type

γζ : Q×Q→ P
(
(Σ ∪ {ε})× Z(n)

)
.

We consider that we define simultaneously the functions
γζγ and γζζ

γζγ : Q×Q→ P (Σ ∪ {ε}) ,
γζζ : Q×Q→ P

(
Z(n)

)
.

In this case, if condition

γζ(q′, q′′) 3 (a, i)

4

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 6, no. 9, 2018

is fulfilled for the states q′, q′′ ∈ Q, then we assume that
conditions

γζγ(q′, q′′) 3 a and γζζ(q
′, q′′) 3 i

are fulfilled.
Functions γζγ and γζζ do not contain other values. �

We shall denote that tuple (Q,Σ, γζγ , S, F) can be con-
sidered as an ordinary nondeterministic finite automaton
for the bracketed automaton (5). We shall denote Lγ(B)
a language defined by this automaton. We shall also des-
ignate a notation Lζ(B) for the language of the automaton
(Q,Z(n), γζζ , S, F).

Let us define the language of the automaton (5) and denote
it as L(B).

Definition 13: Let us suppose that for the sequence of
states q0, q1, . . . , qm ∈ Q the following conditions
• q0 ∈ S, qm ∈ F ,
• γζ(qk, qk+1) 3 (ak, ik) for each k ∈ {0, . . . ,m− 1},
• i1 i2 . . . im ∈ [Z(n)

∗]

are fulfilled. Then we believe that the word a1a2 . . . am
belongs to L(B). The language L(B) does not contain other
words. �

Definition 14: The bracketed automata B1 and B2 are
called equivalent if L(B1) = L(B2). �

Theorem 1: Language recognized by the automaton (5)
is the context-free language.

Proof. We shall prove this fact by constructing correspond-
ing pushdown automaton in the following way. We shall use
the extended pushdown automaton accepting words by empty
of pushdown list (see the strict definition in [1, Ch. 2.5.2]).

For a given bracketed automaton B (5), we shall consider
pushdown automaton

P = (Q ∪ {p0}, Σ, Γ, δ, p0, z0, F), (6)

where
• Q, Σ and F coincide with corresponding objects of

automaton B,
• Γ = N(n) ∪ {z0},

and transition function δ is defined in the following way:
• for each s of the set S, the condition

δ(p0, ε, z0) 3 (s, z0)

is fulfilled;
• an edge of an automaton will be called the transition

of the automaton from one state to another; for each
edge γζ(q′, q′′) 3 (a, i) of the automaton B (where a ∈
Σ ∪ {ε} and i ∈ Z(n)) and each z ∈ Γ the following
condition holds:

– if i = 0, then δ(q′, a, z) 3 (q′′, z),
– if i > 0, then δ(q′, a, ε) 3 (q′′, i),
– if i < 0, then δ(q′, a,−i) 3 (q′′, ε); let us note

once again, that −i is a letter of the alphabet Z(n).
Let us consider a word u ∈ Σ∗ recognized by the automaton
(5). Let u be

u = a1 a2 a3 . . . an .

The operation of the automaton B while accepting of the
word u can be represented as it shown on Fig. 2.

q
a1

0 q1

(q , q)
0 1

a2
q2

(q , q)
1 2

a3
q3

(q , q)
2 3

a4
. . .

(q , q)
3 4

an
qn

(q , q)
n-1 n

Fig. 2. The operation of the automaton B while accepting of the word u

This scheme can be interpreted as the operation of push-
down automaton over word u.

The command of a pushdown automaton is a production
that translates the automaton from configuration to another
one. We consider that the transitions from state to state are
defined by the commands:
• δ(p0, ε, z0) 3 (q0, z0);

for each k from set { 0, . . . , n− 1 }:
• if γζζ(qk, qk+1) > 0,

then δ(qk, ak+1, ε) 3 (qk+1, γζζ(qk, qk+1)),
• if γζζ(qk, qk+1) = 0 and z ∈ Γ,

then δ(qk, ak+1, z) 3 (qk+1, z),
• if γζζ(qk, qk+1) < 0,

then δ(qk, ak+1,−γζζ(qk, qk+1)) 3 (qk+1, ε).
By the construction of the pushdown automaton, all tran-

sitions from state to state have one of the following forms:
1) δ(q, a, z) 3 (p, z),
2) δ(q, a, ε) 3 (p, z),
3) δ(q, a, z) 3 (p, ε), where z ∈ Γ, p, q ∈ Q ∪ {p0}.
Therefore, the proof that any word accepted by pushdown

automaton (6) is also accepted by bracketed automaton (5)
is carried out in a similar way according to the scheme in
Fig. 2. �

In this paper, we do not prove that each context-free
language can be represented by the bracketed automaton.
This problem will be one of the topics of further work. We
shall sketch only the possible ways of such the proof. The
first way is connected with the construction of the bracketed
automaton according to the pushdown automaton.

Let us denote that the form of the instructions 1–3 from the
proof of Theorem 1 does not restrict the class of languages
accepted by an extended pushdown automaton by empty
pushdown list.

Therefore, the work of the pushdown automaton over the
word u similar to shown in Fig. 1, and this scheme can also
be interpreted as the work of the bracketed automaton.

Another way assumes that we can consider D-graph as the
bracketed automaton.

D-graphs is known to specify exactly context-free lan-
guages [5], [6].

Theorem 2: The language is a context-free if and only if
it is determined by some D-graph.

We shall remind briefly the main ways of such a proof [6].
At first, we prove that specific D-graph is equivalent to an
arbitrary pushdown automaton constructively. Then we use
the construction of D-graph from this proof to transform an
arbitrary D-graph into an equivalent pushdown automaton.

B. Transformation of a pushdown automaton into a D-graph

The concept of the route is the key notion. In the case of
a perfect magazine, the second element of the final vertex is
always Z0. The notion of the nest of the route is introduced.
The sections of the route that form the nest are paired with
each other. The aggregate of marks of successful routes of

5

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 6, no. 9, 2018

the perfect pushdown automaton is the language accepted by
the automaton.

Let V (M) is a set of all vertices defined by empty sections
of successful routes of the automaton M , P(M) is the set
of all pairs of edges such that π1 and π2 form a pair in some
successful route of the automaton M .

Then D-graph

Graph(M) =
(Σ, V (M),P(M), λ(M), (p0, Z0), {(p, Z0)|p ∈ F)}),

where the position function λ(M) matches the edge

π ∈ Left(P(M)) ∪ Right(P(M))

to the triple (begin(π), ω(π), end(π)), is equivalent to an
automaton M . The D-graph Graph(M) is called the graph
of a pushdown automaton. This completes the construction
of the D-graph according to the pushdown automaton.

C. Conversion of a D-graph into a pushdown automaton

The concept of a D-graph is used to prove the fact
that for every D-graph there exists an equivalent pushdown
automaton.

In [6], it is shown an algorithm that, from an arbitrary
D-graph D, first obtains the equivalent D-graph G, which is
the graph of some pushdown automaton, then converts the
edges of the resulting D-graph into automaton commands. �

The proof of Theorem 1 can also be carried out using the
D-graphs theory: we shall get D-graph if we substitute every
edge in the bracketed automaton with ζ-mark 0 by a pair of
edges with the unique opening and closing brackets.

IV. CONTEXT-FREE GRAMMARS TO BRACKETED
AUTOMATA

In this section, we present a method of constructing a
bracketed automaton in accordance with a given context-free
grammar.

Firstly, we shall describe the general constructing algo-
rithm, and then demonstrate its work by example.

The strict proof of the correctness of the considered
algorithm, in other words the proof of the equivalence of
the given context-free grammar and the obtained bracketed
automaton, is the subject of the further publication.

A. An algorithm for transforming a context-free grammar to
an equivalent bracketed automaton

Algorithm 1: (Bracketed automaton construction from a
given context-free grammar)

Input: A context-free grammar.
Output: Corresponding bracketed automaton.
Method:
Step 1. Number all the nonterminals of context-free gram-

mar and build a syntax diagram for each grammar production
according to [19].

Step 2. Transform each diagram into a graph as follows:
a) transform the input and output edges into a pair of

vertices marked with nonterminal that defines by syntax
diagram; mark these vertices by indices 1 and 2, respectively;
transform other edges into vertices with arbitrary pairwise
different labels,

b) replace all the terminal vertices of diagrams by the
edges with according terminal labels (for transition function
γζγ) and label 0 (for transition function γζζ).

Step 3. Combine received graphs.
For combining graphs for each i-numbered terminal A we

shall implement the following:
a) substitute the entries into each corresponding vertex that

also marked with A label by the transitions with label +i into
each vertex marked with A1;

b) similarly, substitute the exits from the corresponding
vertices (also labeled as A) by the transitions marked with
−i from each vertex marked with A2.

c) delete the vertices marked with A. �

The bracketed automaton is determined by the constructed
graph. The vertices of the graph are corresponding to automa-
ton states. The transition function is determined by edges.
The initial and final states are corresponding to the pair
of vertices obtained from the initial symbol of the original
grammar.

B. Example of constructing bracketed automaton according
to a context-free grammar

Let us consider the example of context-free grammar with
iterations for model arithmetic expressions for this algorithm:

E → T {+T}, (7)

T → F {∗F}, (8)

F → a | b | (E). (9)

The nonterminal E symbolizes the expression, it is the
initial symbol of the grammar or axiom. The nonterminal T
denotes the term, the nonterminal F is the factor, and termi-
nals a, b are the simple expressions (variables or constants).

The following syntax diagrams according to a given gram-
mar (Fig. 3a) are constructed in an obvious manner.

E

a

b

()

T

+

F

*

E ::=

T ::=

F ::=

a

()

E ::=

T ::=

F ::=

*

T

+

E1 E2

FT1 T2

E

F1 F2
a

b

b

Fig. 3. a) Syntax diagrams for the expressions (7)–(9), Step 1;
b) Graphs based on the syntax diagrams Fig. 3a, Step 2

Transform each diagram into a graph according to step 2
of the algorithm (Fig. 3b).

Substitute the transition to the subgraph T and returning
from one into the graph E (Fig. 4a).

Similarly, substitute the transition to subgraph and return-
ing from one for F (Fig. 4b).

Implement recursion for the obtained graph; for this, make
a transition to E1 and returning from E2 (Fig. 5).

6

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 6, no. 9, 2018

F

()

+2 -2

+3

+1 -1

-3

*

a

E1 E2

T1 T2

F1 F2

E

b

a

+2 -2

+3

+1 -1

-3

b

()

*

a

E1 E2

T1 T2

F1 F2

E

b

Fig. 4. a) Graphs based on the syntax diagrams Fig. 3a, Step 2;
b) Graph based on the syntax diagrams Fig. 3a, Step 3

As a result, we obtained a graph for the arithmetic expres-
sions.

+2 -2

+3 -3

*

a

(+1)-1

E1 E2

T1 T2

F1 F2

b

Fig. 5. Graph based on the syntax diagram Fig. 3a

We consider the example of parsing expression a∗(a+b):

E1 −−→
+2

T1 −−→
+3

F1
a−→ F2 −−→−3 T2

∗−→ T1 −−→
+3

→ F1
(−−→
+1

E1 −−→
+2

T1 −−→
+3

F1
a−→ F2 −−→−3 T2 −−→−2

→ E2
+−→ E1 −−→

+2
T1 −−→

+3
F1

b−→ F2 −−→−3 T2 −−→−2
→ E2

)−−→
−1

F2 −−→−3 T2 −−→−2 E2.

V. EQUIVALENT TRANSFORMATIONS
OF BRACKETED AUTOMATA

Let us introduce a new alphabet Ψ = Σ×Z(n). It consists
of the symbols of the alphabet Σ and the elements that
symbolize the pair of brackets.

For this alphabet, we shall consider the ordinary nonde-
terministic finite automaton constructed on the base of the
given bracketed automaton (3)

K(B) = (Q,Ψ, δγζ , S, F),

where the transition function δγζ is constructed as follows:
• for every edge γζ(q′, q′′) 3 (a, i) of the automaton B,

the edge δγζ(q
′, (a, i)) 3 q′′ of the automaton K(B)

does exist;
• anything else is not an edge of the automaton K(B).
Now we shall consider the “inverse” transformation. Let

us consider a nondeterministic finite automaton

K = (Q̂,Ψ, δ̂, Ŝ, F̂),

and define the corresponding bracketed automaton

B(K) = (Q̂,Ψ, γ̂ζ δ̂, Ŝ, F̂ , n),

where the value n can be chosen based on the letter of the
alphabet Ψ = Σ × Z(n), and the transition function γ̂ζ δ̂ is
constructed in a similar way: the edge γ̂ζ δ̂(q

′, q′′) 3 (a, i) of
the automaton B(K) exists for every edge δ̂(q′, (a, i)) 3 q′′
of the automaton K.

Theorem 3: Let K1 and K2 be some nondeterministic
finite automata over the alphabet Ψ, and L(K1) = L(K2).
Then L(B(K1)) = L(B(K2)).

Proof. Let us consider a word v that belongs to the
language L(K1) and, therefore, to the language L(K2).

We shall construct B(K1) and B(K2) according to the
previous definition. We shall form two words from the word
v:
• vζ ∈ Z∗(n), which contains the symbols of the word
v belonging to the alphabet Z(n) in the same order in
which they occur in v,

• and vγ ∈ Σ∗, which contains symbols from the alphabet
Σ, in the same order in which they occur in v.

From v ∈ L(K1) we get

vγ ∈ L(B(K1))

and

vζ ∈ Lζ(B(K1)).

Furthermore, vγ ∈ L(B(K2)) and vζ ∈ Lζ(B(K2)) as
soon as v ∈ L(K2). Therefore, L(B(K1)) = L(B(K2)). �

For example, consider the bracketed automata

B1 = ({X,Y, Z}, {a, b}, γ̂ζ δ̂1 , {X}, {X,Y, Z}, 1) and

B2 = ({A}, {a, b}, γ̂ζ δ̂2 , {A}, {A}, 1),

shown on Fig. 6 (a, b).
They generate the language of bracketed systems. Brack-

eted system can consist of brackets ”)”, ”(” , ”[” and others.
Language may have one or more types of brackets. In the
bracketed systems a is an opening bracket, and b is a closing
one.

b

b

b

a

a

a-1
-1

-1

+1

+1

Y

X

Z

+1

b-1Aa +1

Fig. 6. a) Automaton B1; b) Automaton B2

The functions γ̂ζ δ̂1 , γ̂ζ δ̂2 are determined from the images
of the automaton on the figures.

It is not difficult to see that finite automata

K(B1) = ({X,Y, Z}, {(a,+1), (b,−1)}, δ̂1, {X}, {X,Y, Z})

and

K(B2) = ({A}, {(a,+1), (b,−1)}, δ̂2, {A}, {A})

are equivalent, and K(B2) is minimal in term of the quantity
of vertices.

7

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 6, no. 9, 2018

According to Theorem 3, the bracketed automata B1 and
B2 are also equivalent. In addition, the bracketed automaton
B2 has the smallest possible quantity of vertices.

Thus, Fig. 6 shows an example of an automaton, from
which, using the transformation under consideration, we can
obtain an automaton with a minimum number of vertices.

On Fig. 7 we give an example of an automaton (C1), which
can be reduced to the automaton with a smaller number of
vertices (C2) with the help of the considered transformation.
But C3 is the equivalent automaton with the minimal number
of the vertices.

As a result, with the help of the transformation under
consideration, we obtained an automaton with a smaller
number of vertices, but not a minimum.

a

+1

b

b

-1

-1

a

a

+1

+1

b

-1

b

-1

b

-1

b

-1

a

a

+1

+1

b

-1

b

-1

C1:

C2:

C3:

Fig. 7. The transformation of the automaton

We note that each of the automata C1, C2, C3 is a correct
bracketed automaton [21].

VI. CONCLUSION

Let us briefly summarize the results of the paper and
formulate the main directions for further research on this
topic. Thus, we considered the bracketed automata as a new
formalism for defining context-free languages.

This formalism is similar to the nondeterministic finite
automata. This fact makes it possible to use any algorithms
for the equivalent transformation of nondeterministic finite
automata, obtaining various algorithms for equivalent trans-
formations for the formalism that defines the given context-
free languages.

In this paper, it is shown that we can apply different
algorithms of equivalent transformation to the automata
considered in the paper. As such algorithms, we can consider
algorithms of constructing the equivalent automaton having
minimal possible number of states (so-called minimal au-
tomaton) [12] or number of edges [14], [20], the equivalent
universal automaton, an automaton according to the basis
one, etc.

Moreover, we can obtain objects of the proposed formal-
ism which are more acceptable in terms of some character-
istics, such as fewer numbers of vertices or edges.

We also denote that the well-known theorem of Chomsky-
Schützenberger about the representation of a context-free
language by the morphic image of the intersection of the
Dyck language and the regular language [22] can be obtained
as a consequence of the definition of the bracketed automaton

language. A similar result for D-graphs was established by
L. I. Stanevichene in [5].

Searching subclasses of bracketed automata in which the
problem of vertex minimization is solved and finding the
corresponding algorithms, by means of which, with certain
transformations, a minimal bracketed automaton will be
constructed may be the direction of further work.

REFERENCES

[1] Aho A., Ullman J. The theory of parsing, translation and compiling,
V.1, Prentice-Hall, INC, Englewood Cliffs, N.J., 1972.

[2] Vylitok A. On a pushdown automata graph construction, Vestnik of
Moscow University, S. 15, Computational Mathematics and Cybernet-
ics, 1996, no. 3, pp. 68–73 (in Russian).

[3] Ollongren A. Definition of programming languages by interpreting
automata, (London: Academic Press, 1974).

[4] Stanevichene L. On one way of studying contextless languages, The
Cybernetics, 1989, no. 4, pp. 135–136.

[5] Stanevičené L. D-Graphs in Context-Free Language Theory, Informat-
ica (Journal of Lithuanian Academy of Sciences), 1997, V.8, no. 1.
pp. 43–56.

[6] Stanevichene L. On some definitions of context-free languages, Pro-
gramming and Computer Software, 1999, no. 5, pp.15–25.

[7] Vylitok A., Zubova M., Melnikov B. On an extension of the class of
finite automata for the specification of context-free languages, Vestnik
of Moscow University, S. 15, Computational Mathematics and Cyber-
netics, 2013, no. 1, pp. 39–45 (in Russian).

[8] Melnikov B., Melnikova A. Pseudo-automata for Generalized Regular
Expression, International Journal of Open Information Technologies,
2018, V. 6, no. 1, pp. 1–8.

[9] Medvedev Y. On the class of events accepting a representation in a
finite automaton, Automata, M, Foreign Literature, 1956, pp. 385–401.

[10] Melnikov B., Vakhitova A. Some more on the finite automata, The
Korean Journal of Computational and Applied Mathematics, (Journal of
Applied Mathematics and Computing), 1998, vol. 5, no. 3, pp. 495–506.

[11] Melnikov B. Extended nondeterministic finite automata, Fundamenta
Informaticae, 2010, V. 104, no. 3, pp. 255–256.

[12] Melnikov B. A new algorithm of the state-minimization for the nonde-
terministic finite automata, The Korean Journal of Computational and
Applied Mathematics, 1999, no. 2, pp. 277–290.

[13] Melnikov B., Sayfullina M. On some algorithms of equivalent trans-
formations of nondeterministic finite automata, Izvestiya of universities.
Mathematics, 2009, no. 4, pp. 67–72 (in Russian) (English translation:
Mel’nikov B., Saifullina M. Some algorithms for equivalent transfor-
mations of nondeterministic finite automata, Russian Mathematics (Izv.
VUZ), 2009, no. 4, pp. 54–56.)

[14] Melnikov B. Once more on the edge-minimization of nondeterministic
finite automata and the connected problems, Fundamenta Informaticae,
2010, no. 3, pp. 267–283.

[15] Dolgov V., Melnikov B. A Construction of Universal Final Automaton.
I. From the Theory to the Practical Algorithms, Bulletin of Voronezh
State University, Series: Physics. Mathematics, 2013, no. 2, pp. 173–
181.

[16] Jiang T., Ravikumar B. Minimal NFA problems are hard, SIAM
J.Comput, 1993, V. 22, no. 6, pp. 1117–1141.

[17] Geldenhuys J., van der Merwe B., van Zijl L. Reducing nondetermin-
istic finite automata with SAT solvers Springer. Finite-State Methods
and Natural Language Processing, Lecture Notes in Computer Science,
2010, V. 6062, pp. 81–92.

[18] Polák L., Minimizations of NFA using the universal automaton, In-
ternational Journal of Foundations of Computer Science, 2005, V. 16,
no. 5, pp. 999–1010.

[19] Wirth N. Algorithms + Data Structure = Programs, Prentice-Hall PTR
UPPER Saddle River, N.J., USA, 1978.

[20] Melnikov B., Melnikova A. Edge-minimization of non-deterministic
finite automata, The Korean J. of Comp. and Appl. Math., September
2001, V. 8, pp. 469–479 (Journal of Applied Mathematics and Comput-
ing).

[21] Vylitok A., Zubova M, The correct bracketed automata, Problems of
Theoretical Cybernetics. Materials of the XVII International Conference
(Kazan, June 16-20, 2014), S. Problems of theoretical cybernetics,
Fatherland Kazan, pp. 62–65.

[22] Chomsky N., Schützenberger M.-P. The Algebraic Theory of Context-
Free Languages, Computer Programming and Formal Systems, P.
Braffort and D. Hirschberg (eds.), North Holland, 1963, pp. 118–161.

8

	Introduction and motivation
	Preliminaries
	Nondeterministic finite automaton: classical definitions and additional information
	A nondeterministic pushdown automaton and an extended one
	D-graphs
	Perfect pushdown automaton

	Bracketed automata
	Special automata for accepting context-free languages
	Transformation of a pushdown automaton into a D-graph
	Conversion of a D-graph into a pushdown automaton

	Context-free grammars to bracketed automata
	An algorithm for transforming a context-free grammar to an equivalent bracketed automaton
	Example of constructing bracketed automaton according to a context-free grammar

	Equivalent transformations of bracketed automata
	Conclusion
	References

