
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 6, no.1, 2018

Pseudo-automata
for generalized regular expressions

B. F. Melnikov, A. A. Melnikova

Abstract—In this paper, we introduce a new formalism
which is intended for representing a special extensions of finite
automata. We call them generalized nondeterministic finite
pseudo-automata. This formalism gives not only the equivalence
between two classes of finite automata, i.e., ordinary nondeter-
ministic finite automata and pseudo-automata introduced by us,
which also define all the regular languages. This formalism also
gives an opportunity of defining the complement operation (and,
therefore, generalized regular expressions) in a way similar to
the usual “automata” methods.

We use the term “pseudo-automata”, because, unlike usual
automata constructions (ordinary nondeterministic finite au-
tomata, push-down automata, Turing machines etc.), we do not
indicate the concrete paths for defining the considered word
of the given regular language; the introduced formalism gives
only the algorithm for answering the question, whether the
given word belongs to the considered language.

In the paper, we firstly give definition of the pseudo-automata
and their languages. After that, we consider the diagrams
allowing to visualize them and give some examples. Then we
consider some properties of introduced formalism.

Keywords—nondeterministic finite automata, regular lan-
guages, generalized regular expressions, extension of automata.

I. INTRODUCTION AND MOTIVATION

In this paper, we propose a formalism used for represent-
ing a special class of extensions of finite automata; we call
them generalized nondeterministic finite pseudo-automata.
The considered algorithm of constructing such automata
gives not only the equivalence between the classes of such
automata and ordinary finite automata (because such equiva-
lence is obvious a priori), but also the possibility of defining
the complement operation (and, generally, the generalized
regular expressions) by usual “automata” methods. We also
consider a method of constructing the concrete generalized
nondeterministic finite pseudo-automaton which defines the
given generalized regular expression. 1

This paper is supposed to be the first in a series of papers,
and we intend to publish the properties of pseudo-automata
in several subsequent publications. In this paper, we give the
most general definitions and facts only.

In many papers published before, many extensions of
nondeterministic finite automata (NFAs) were considered. 2

Received December 27, 2017.
Boris F. Melnikov, Russian State Social University (email: bf-melnikov@

yandex.ru).
Aleksandra A. Melnikova, National Research Nuclear University “MEPhI”

(email: super-avahi@yandex.ru).
1 Remark that like ordinary nondeterministic finite automata, it can also

define some other equivalent generalized regular expressions.
2 Among these articles, there is important to mention papers of D. Kirsten,

related to the topic of the present work. See [1], [2], etc.
Let us also mention three papers of the authors [3], [4], [5]. In them,

three different extensions of NFA class were considered; in two of them,
the edges were labeled by regular expressions.

However, the authors do not know papers, where automata
with the complement operation are considered, although such
complement operation does not give the loss of regularity.
The first author already proposed another approach for the
same problem, see [6]. However, in the current paper we
define an analog of the complement operation in a different
way, which, apparently, is much more successful. 3 And,
consequently, in this paper, we use completely other notation.
For instance, we use the term “pseudo” because we usually
are not able to indicate the path defining the given word (we
are able to make this thing for ordinary NFAs, push-down
automata, Turing machines, etc.); however, at the same time,
this word can belong to the considered regular language.

Thus, we shall consider formalism for defining automata
for the generalized regular expressions; these expressions are
defined like [7]. In other words, we consider the complement
operation by “usual automaton methods”.

This paper has the following structure. In Section II, we
propose the main definitions, i.e., definitions of generalized
nondeterministic finite pseudo-automaton (GNFPA) and its
language. Namely, we formally determine the correspond-
ing generalized regular expression by the given pseudo-
automaton. Therefore, we can in principle, on the basis of
this definition only, solve all the usual problems of the theory
of regular languages: we can simply obtain a regular ex-
pression for our pseudo-automaton, such that this expression
would be equivalent (i.e., would define the same language)
to the given generalized regular expression. Certainly, we
will rarely apply this approach: we define GNFPAs for more
complex problems.

One of such standard problems (for the general formal
language theory) is checking whether the given word belongs
to the language of the given automaton. For GNFPAs, we
consider a trivial (but long working) algorithm for such
checking in Section III. We are going to describe a more
effective algorithm for this thing in the next paper.

In Section IV, we present a method of depicting such au-
tomata in the form of graphs and consider a detailed example.
In Section V, we present the algorithm of construction of
GNFPA by the given generalized regular expression.

In Section VI, we give some alternative models of pseudo-
automata. Namely, we formulate: another definition of the
language of the given GNFPA; a model of pseudo-automaton
that can be regarded as an analog of canonical NFA; two
other definitions of GNFPA (a simplified one and, vice versa,
a complicated one). In that section and in Conclusion, we

3 Let us remark in advance, that the main definition of the current paper
(given in Section II) will describe a more general case than the approach
given in [6], and, vice versa, one of the alternative definitions (a definition
of Section VI) will describe a particular case of that approach.

1

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 6, no.1, 2018

also briefly formulate directions for further work on this
topic.

II. THE MAIN DEFINITIONS

Firstly let us define a generalized regular expression like
[7] etc.; simultaneously, let us determine corresponding reg-
ular languages.

Definition 1: A generalized regular expression (GRE) on
the given finite alphabet Σ is defined in the following way:

1) GRE ∅ defines regular language ∅;
2) GRE ε defines regular language {ε}; 4

3) for each letter a ∈ Σ, GRE a defines regular language
{a}.

Further, let p and r be two GRE 5 defining regular languages
P and R respectively. Then:

4) GRE (p+ r) defines regular language P ∪R;
5) GRE (p · r) defines regular language P ·R;
6) GRE (p∗) defines regular language P ∗;

(as for ordinary regular expression). Besides:
7) GRE (p) defines regular language P , i.e., language

Σ∗ \P .
Nothing more is a GRE.

For generalized regular expression E , its language will be
denoted by L(E)

Also like [7] etc., we shall sometimes omit unnecessary
parentheses and symbols “ · ”.�

We shall not consider examples, they are well-known, see
[7] etc.

Let us now define generalized nondeterministic finite au-
tomata and their languages.

Definition 2: A generalized nondeterministic finite pseu-
do-automaton (GNFPA) is a tuple

G =
(
Q,Σ, δ, S, F, T, ζin, ζout

)
, (1)

where:
• Q is the finite set of states;
• Σ is the considered alphabet;
• δ is the transition function of the type

δ : Q×
(
Σ ∪ {ε}

)
→ P(Q)

(where P(Q) means the superset for Q);
• S⊆ Q is the set of initial states;
• F ⊆ Q is the set of final states

(as for ordinary nondeterministic finite automaton). Besides:
• T ⊆ N is a finite set; 6

• ζin: T → Q × P(Q) (the push-function); for some its
element

ζin(i) = (si, Si),

we shall write si = θin(i) and Si = Θin(i);
• ζout: T → P(Q)×Q (the pop-function); for some its

element
ζout(j) = (Fj , fj),

we shall write Fj = Θout(j) and fj = θout(j).�

4 Similar to most books on the formal languages theory, we shall consider
this item, although expressions ε and defined below (∅∗) are equivalent
(under natural interpretations).

5 Remark that they are not two ordinary regular expressions.
6 We mean that N does not contain 0, i.e., N = { 1, 2, . . . }.

The set T and functions ζin and ζout define complement
languages; below, we shall define such languages and, gen-
erally, language of a GNFPA. For this thing, let us firstly
consider some ancillary definitions.

Definition 3: For the given NFA K = (Q,Σ, δ, S, F) and
some subsets S′, F ′ ⊆ Q, let us denote nondeterministic
finite automaton (Q,Σ, δ, S′, F ′) by K(K,S′, F ′).�

Definition 4: For the given GNFPA G (1), let us denote
corresponding ordinary nondeterministic finite automaton
(Q,Σ, δ, S, F) by K(G).�

Definition 5: For the given GNFPA G defined by (1)
and some subsets S′, F ′ ⊆ Q, let us denote the GNFPA
(Q,Σ, δ, S′, F ′, T, ζin, ζout) by G(G,S′, F ′).�

Definition 6: Let G be a GNFPA (1), where T 6= ∅. For
some k ∈ T , let us define a generalized nondeterministic
finite automaton

G−k =
(
Q,Σ, δ, S, F, T−k, ζ

in
−k, ζ

out
−k
)
,

where:
• T−k = T \ {k};
• ζin−k(i) = ζin(i) for each i ∈ T−k;
• ζout−k (i) = ζout(i) for each i ∈ T−k. 7

Below, we shall sometimes use functor names ζin and ζout

instead of ζin−k and ζout−k respectively.�
Let us present now the main definition of this paper (it is

the recurrent definition).
Main Definition 1: Let the GNFPA G defined by (1) be

given. Then we define its language L(G) in the following
way.
• Let L1 = L(K(G)). 8

• If T = ∅, then we define L2 = ∅.
• Otherwise, for each k ∈ T , let us consider three the

following GNFPAs:
1) G→k = G

(
G−k, S, {θin(k)}

)
;

2) G[k] = G
(
G−k,Θ

in(k),Θout(k)
)
;

3) and Gk→ = G (G−k, {θout(k)}, F).
Then we define

L2 =
⋃
i∈T

(
L(G→i) · L(G[i]) · L(Gi→)

)
. (2)

• The defined language L(G) = L1 ∪ L2.�
Remark that this definition is correct: the cardinality of the

set T for each of three GNFPAs G→k, G[k] and Gk→ is less
than the cardinality of the set T for GNFPA G. Therefore,
we can assume that we a priori know the languages of these
three GNFPAs, because we also defined the languages of all
GNFPAs having T = ∅.

It is also very important to note the following fact. There is
no analogy with the accepting path of an ordinary automaton:
in the case of our automata, such path, generally speaking,
simply does not exist. That is, we have not to define the
language by an accepting path (as we do for ordinary NFAs,
and also for push-down automata and Turing machines, [8]
etc.); we do it in a different method. In this method, we do
not know the order of the use of the elements of T , and,
therefore, we have to assume the possibility of any order of
their application as an initial definition.

7 Remark that we define all the necessary values for ζin−k(i) and ζout−k (i).
8 I.e., we consider in this case the ordinary nondeterministic finite

automaton and the usual definition of its language.

2

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 6, no.1, 2018

As we already said in Introduction, in principle we can,
on the basis of this definition only, solve all the usual
problems of the theory of regular languages (because we
can simply obtain a regular expression for our pseudo-
automata, such that this expression would define the same
language). Certainly, we will rarely apply this approach: we
define GNFPAs for more complex problems. Some of such
problems are considered in the remainder of the paper.

III. ALGORITHM FOR CHECKING WHETHER THE WORD
BELONGS TO THE LANGUAGE OF GNFA

In this section, we give an obvious recursive algorithm for
checking, whether the given word belongs to the language of
GNFPA. It is clear that without the algorithm answering this
question, it hardly makes sense to consider pseudo-automata:
the method, briefly described at the end of previous section,
connected with the reformulation this question for ordinary
automata and ordinary regular expressions, can hardly be
called acceptable.

We shall not consider the complexity of this algorithm
because of the following. Firstly, the main its purpose is the
fundamental possibility of the corresponding problem. Sec-
ondly, we propose to introduce significantly more efficient
algorithm in the following papers.

Algorithm 1: Checking whether the word belongs to the
language of GNFPA.

Input:
• GNFPA G given by Definition 2;
• word u ∈ Σ∗.
Output:
• true, if u ∈ L(G);
• false, if u /∈ L(G).
We shall denote the result of calling of this algorithm

(true or false) by Checking(G, u); here, we apply a
recursive call. In addition, like Pascal language, we shall use
notation Checking (without arguments) on the left side of
the assignment operator, to return a value to the running
algorithm. However, like C++ language (and unlike Pascal),
we believe that the use of such an assignment operator leads
to the immediate completion of the execution of the branch
of the recursive algorithm.

Method:
• if u ∈ L(K(G)) then Checking:=true;
• if T = ∅ then Checking:=false;
• for each representation of the word u in the form u =
xyz, we consider each k ∈ T ; if for at least one of these
variants, we obtain simultaneously:

– x ∈ G→k, i.e., Checking(G→k, x)=true;
– y ∈ G[k], i.e., Checking(G[k], y)=true;
– and z ∈ Gk→, i.e., Checking(Gk→, z)=true

(in these subitems, we make the recursive calls), then
Checking:=true;

• otherwise, Checking:=false.
End of the description of Algorithm 1. �

The correctness of this algorithm immediately follows
from Main Definition 1.

IV. DIAGRAMS OF GNFPAS AND EXAMPLES

In this section, we present two methods of depicting our
pseudo-automata in the form of graphs and consider some

examples. Like ordinary NFA, a GNFPA can be described
by an oriented graph; however, the edges are here labeled
by both letters of Σ and some integers. The sets Q, S, F
and δ are represented like ones for ordinary NFA. Further, if
q ∈ Θin(i), then we add the edge from θin(i) to q labeled by
−i; similarly, if q ∈ Θout(i), then we add the edge from q
to θout(i) labeled by +i (we shall never omit the sign “+”).

Remark also, that we can omit the set T (it consists of
all the marks of corresponding edges), but, unlike ordinary
NFAs, we have to designate considered alphabet Σ.

In our previous papers [3], [4], [6], [9] etc., we denote
the states of ordinary automata (NFAs) by double circles,
like, for example, [10]. In this paper, we shall use the same
agreement (i.e., use double circles for NFAs which are not
GNFPAs) and use single circles for “proper” GNFPAs.

We shall also use the following agreement distinguishing
ordinary NFAs and GNFPAs: ordinary lines will show the
ordinary edges (marked by letters of Σ, usually a and b),
and dotted lines will show the elements of ζin and ζout.

Thus, for alphabet Σ = {a, b}, let us consider the follow-
ing pseudo-automaton, depicted on Fig. 1 below. For this
pseudo-automaton (let it be 1), we have:

����
q1

6

6−1

����
q2

6−2

����
q3 ����

q4

?
+2

����
q5 -b ����

q6 -b ����
q7

6−3

����
q8 ����

q9

?
+3

����
q10

?
+1

����
q11

?

Σ = { a, b }

Fig. 1

• Q = { q1, . . . , q11 };
• Σ = { a, b } (remark once more, that we have to indicate

the alphabet on the figure);
• δ =

{
q5

b−→ q6, q6
b−→ q7

}
;

• S = {q1};
• F = {q11};
• T = { 1, 2, 3 };
• ζin(1) = (q1, { q2 }), ζout(1) = ({ q10 } , q11);
• ζin(2) = (q2, { q3 }), ζout(1) = ({ q4 } , q5);
• ζin(3) = (q7, { q8 }), ζout(1) = ({ q9 } , q10).

(Below, we shall not use such detailed applications of de-
scriptions.)

Now, we shall use Main Definition 1. Evidently, we have
here L(K(G)) = ∅, then for defining L(G), we have to
consider the following automata. More precisely, denoting
the sequences in square brackets (in order not to confuse
them with the notation of formulas), we will consider 6
possible sequences of applying 3 elements of the set T :

[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1].

We shall use the possible sequences of applying these ele-
ments in the title of subsections. We shall also apply some
incomplete sequences for this thing, e.g., [1], [1, 2], etc.

Sequence [1]
• We have i = 1, then θin(1) = q1, then pseudo-auto-

maton G→1 is depicted on the following Fig. 2:

3

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 6, no.1, 2018

����
q1

6

�

����
q2

6−2

����
q3 ����

q4

?
+2

����
q5 -b ����

q6 -b ����
q7

6−3

����
q8 ����

q9

?
+3

����
q10

����
q11Σ = { a, b }

Fig. 2

There is evident, that L(G→1) = {ε}.
• Similarly, θout(1) = q11, then for automaton G1→, we

also obtain L(G1→) = {ε}.
• Therefore, we have to consider the following pseudo-

automaton G[1] (Fig. 3 below), which have the only
initial state q2 (because for G, we have Θin(1) = {q2}):

����
q1

6
����
q2

6−2

����
q3 ����

q4

?
+2

����
q5 -b ����

q6 -b ����
q7

6−3

����
q8 ����

q9

?
+3

����
q10

����
q11

?

Σ = { a, b }

Fig. 3

We have to use the complement of its language as the
subset of the language of the given pseudo-automaton
G.
Further, for related figures (i.e., for sequences [1, 2] and
[1, 3]), we shall not depict states q1 and q11.

We shall continue to consider this case (i.e., sequence [1])
after studying its subcases (sequences [1, 2], [1, 2, 3], [1, 3]
and [1, 3, 2]).

Sequence [1,2]
• For this sequence, we have now i = 2, then θin(2) =
q2, then pseudo-automaton (G[1])→2 is depicted on the
following Fig. 4:

����
q2

6

�

6−2

����
q3 ����

q4

?
+2

����
q5 -b ����

q6 -b ����
q7

6−3

����
q8 ����

q9

?
+3

����
q10

Σ = { a, b }

Fig. 4

There is evident, that L((G[1])→2) = {ε}.

����
q3- ����

q4 -

����
q5 -b ����

q6 -b ����
q7

6−3

����
q8 ����

q9

?
+3

����
q10

Σ = { a, b }

Fig. 5

• Θin(2) = {q3}, Θout(2) = {q4}, then pseudo-automa-
ton (G[1])[2] is depicted on Fig. 5 given before. (We
omit state q2. Remark that we also could omit some
other states.)
Evidently, the language of this automaton is ∅, then the
complement of this language (used in our definitions)
is Σ∗.

• θout(2) = q5, then automaton (G[1])2→ is depicted on
Fig. 6 below; like before, we omit some states, not
affecting the language.

����
q5- -b ����

q6 -b ����
q7

6−3

����
q8 ����

q9

?
+3

����
q10 -

Σ = { a, b }

Fig. 6

The languages of this pseudo-automaton will be ob-
tained below, by considering sequence [1, 2, 3].

Sequence [1,2,3]
Let the considered automaton (Fig. 6) be G′.
• Evidently, we obtain language L(G′→3) = {bb}.
• Like pseudo-automaton (G[1])[2], we obtain that
L(G′[3]) = {ε}, and the complement of this language
is Σ∗.

• And, evidently, L(G′3→) = {ε}.

Sequences [1,3] and [1,3,2]
These cases are very similar to the discussed above cases

for sequences [1, 3] and [1, 3, 2]. Moreover, we obtain the
same languages. Therefore, we shall not consider these cases.

Sequence [1], the completion
Let us finish considering the language which obtained

where we apply i = 1 in Main Definition 1 (i.e., in (2)).
For pseudo-automaton G[1] (Fig. 3) we obtained, that its

language is
L(G[1]) = Σ∗ · b · b · Σ∗;

then

L(G) ⊇ {ε} · Σ∗ · b · b · Σ∗ · {ε} = Σ∗ · b · b · Σ∗. (3)

Sequences [2] and [3]
Let us consider the case of sequence [2] (the case of

sequence [3] is similar). For it, there is sufficient to consider
pseudo-automaton G→2 only. It is the following one:

����
q1

6

6−1

����
q2�

6−2

����
q3 ����

q4

?
+2

����
q5 -b ����

q6 -b ����
q7

6−3

����
q8 ����

q9

?
+3

����
q10

?
+1

����
q11Σ = { a, b }

Fig. 7

4

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 6, no.1, 2018

We can simply obtain, that its language is empty: states
q1 and q2 have no connecting paths, they have “connecting”
ζin-element only. From here, it is easy to obtain, that all
the languages resulting for sequences [2] and [3] are ∅, and,
therefore, in (3) we can change the sign “⊇” for “=”.

Thus, the obtained language for considered pseudo-
automaton G is

Σ∗ · b · b · Σ∗. (4)

It is the language including all the words over alphabet {a, b}
that do not include two characters b in a row in neighboring
positions. We can see that for this language, the ordinary
automaton (a NFA defining it) is simpler (Fig. 8):

��
��
��
��

1

n
	a

-

?
��
��
��
��

2

?

-b
�

a

Fig. 8

However, certainly, there exist languages, for which a GRE
is simpler then a regular expression.

V. THE ALGORITHM OF CONSTRUCTION OF GNFPA
BY THE GIVEN GENERALIZED REGULAR EXPRESSION

In this section, we believe the generalized regular expres-
sion be given and present the algorithm constructing corre-
sponding pseudo-automaton, i.e., a GNFPA which language
coincides with the language of the given GRE.

For ordinary nondeterministic finite automata and regular
expressions, a similar version of building NFA is known
since the 1950s; see, for example, the description of the
classical version of such construction in [7].

And in this section, we transfer this method for GREs and
GNFPAs. We make building in roughly the same way as
in [6]. Like the classical construction, the automaton corre-
sponding to the regular expression is constructed recursively
according to the items of Definition 1; certainly, we have
to add an item corresponding to the complement operation.
Thus, we explicitly indicate the automaton (that is, we use
the constructive definition for the GNFPA).

As we already noted in Introduction, a different definition
of our formalism was used in [6]. However, we are able
to use figures of [6], because the formalism defined there
uses only the special cases of the above definitions; it also
can be considered as a special case of the formalism defined
in the present paper. Therefore, we do not repeat the figures
from [6] in this paper 9 and consider the figure for automaton
describing GRE p only.

Like ordinary regular expressions and ordinary NFAs,
we have to indicate the specific GNFPA which language
coincides with the language of the given GRE. But we cannot
use completely unchanged construction of [7] etc., because
we have to define a GNFPA, not a NFA; however, this does
not complicate the presentation. We also note in advance that
in each item there is evident the proof, that the presented
GNFPA actually determines the required GRE.

Thus, let us consider the following algorithm.

9 Let us only remark, that unlike [6], we marked here elements of ζin
by negative numbers and elements of ζout by positive numbers.

Algorithm 2: Constructing corresponding generalized
nondeterministic finite pseudo-automaton by the given gen-
eralized regular expression.

Input: GRE E .
Output: a GNFPA G, such that L(G) = L(E).
Method: Let us consider items corresponding to Defini-

tion 1.
1) GRE ∅ corresponds to pseudo-automaton(

{s, f},Σ,∅, {s}, {f},∅,∅,∅
)

(here and below, as before, we consider functions δ, ζin

and ζout as the sets of their elements, and, therefore,
we use the sign ∅; set T is also empty);

2) GRE ε corresponds to pseudo-automaton(
{s, f},Σ, δ, {s}, {f},∅,∅,∅

)
,

where
δ =

{
s

ε−→ f
}

;

3) for each letter a ∈ Σ, GRE a corresponds to pseudo-
automaton(

{s, f},Σ, δ, {s}, {f},∅,∅,∅
)
,

where
δ =

{
s

a−→ f
}
.

Further, let p and r be two GRE corresponding to pseudo-
automata

Gp =
(
Qp,Σ, δp, Sp, Fp, Tp, ζ

in
p , ζ

out
p

)
and

Gr =
(
Qr,Σ, δr, Sr, Fr, Tr, ζ

in
r , ζ

out
r

)
respectively. Let us remark, that according to the above
definitions, we can assume, that Tp ∩ Tr = ∅. Then:

4) GRE (p+ r) corresponds to pseudo-automaton

Gp+r =
(
Qp ∪Qr,Σ, δp ∪ δr, Sp ∪ Sr, Fp ∪ Fr,

Tp ∪ Tr, ζinp ∪ ζinr , ζoutp ∪ ζoutr

)
;

5) GRE (p · r) corresponds to pseudo-automaton

Gp·r =
(
Qp ∪Qr,Σ, δp ∪ δr ∪ δ∪, Sp, Fr,

Tp ∪ Tr, ζinp ∪ ζinr , ζoutp ∪ ζoutr

)
,

where

δ∪ =
{
fp

ε−→ sr
∣∣ fp ∈ Fp, sr ∈ Sr };

6) GRE (p∗) corresponds to pseudo-automaton

Gp∗ =
(
Qp ∪ {q},Σ, δp ∪ δ∪, {q}, {q}, Tp, ζinp , ζoutp

)
,

where q /∈ Q is a new state, and

δ∪ =
{
q

ε−→ sp
∣∣ sp ∈ Sp } ∪ { fp ε−→ q

∣∣ fp ∈ Fp }
(like ordinary regular expression and usual constructions
close to the matter of [7] etc. 10). Besides:

7) GRE (p) corresponds to pseudo-automaton

Gp =
(
Qp ∪ {s, f},Σ, δp, {s}, {f},

Tp ∪ {t}, ζinp ∪ ζin∪ , ζoutp ∪ ζout∪
)
,

10 Certainly, we also add three elements of the tuple (1).

5

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 6, no.1, 2018

where s, f /∈ Q are new states, t /∈ Tp is a new element,
and

ζin∪ (t) =
(
s, Sp

)
, ζout∪ (t) =

(
Fp, f

)
.

(Like before, we consider functions ζin and ζout as sets
of their elements. Namely, we defined here function ζinp
containing all the elements of function ζinp and also the
specified here elements for its new argument t (i.e., set
ζin∪). Similarly for ζoutp , see Fig. 9.)

k
?
f

Fp

?R 	

k k k
. . .
. . .

k k k
k

Sp

s
?

? R	
−t −t −t

+t +t +t

.

.

P

Fig. 9

End of the description of Algorithm 2. �
As we already said, the proofs of the correctness of

constructions are simple for each item. Let us formulate this
fact by the following proposition.

Proposition 1: Using Algorithm 2, we obtain a GNFPA
defining the given GRE. 11

Proof. Items 1, 2, 3 and 6 are evident. In items 4 and
5, sets T of the parts of automata (i.e., sets P and R of
automata TP and TR) do not affect the languages of the
other part of the same automaton. In item 7, we have the
only possibility for defining the word: i.e., we have to use t
in (2) for defining a word. Then we obtain the complement
of language of automaton P .�

Let us remark, that the precise application of Algorithm 2
gives automaton which is significantly different from the
above (Fig. 1). Therefore, having at the input GRE (4)
considered before, we obtain automaton, which after trivial
simplifications becomes the following one (Fig. 10):

����
q1- ����

q2 -
b ����

q3 -
b ����

q4 ����
q5 --

−1

-

+1

Σ = { a, b }

Fig. 10

n
	a, b n

	a, b

11 That is, we really define this expression, and not just equivalent to
it, as usually in such proofs. The informal explanation of this fact is the
following. Firstly, we explicitly indicate the order of the automata used in
applying the operation +. Secondly, the process of constructing the pseudo-
automaton described here explicitly determines the only possible order of
appearance of elements of set T (for the obtained automaton).

VI. THE ALTERNATIVE MODELS
AND SOME DIRECTIONS FOR FURTHER RESEARCHES

The title of this section includes the word “models”, and
we do present four models different from one considered
above. However, each time (i.e., for each model), we mean
different things:

1) we consider another definition of the language of the
given GNFPA, which gives the equivalent language;

2) we consider the GNFPA which is obtained based on
the canonical NFA for the given language;

3) we consider another (simplified) definition of the func-
tions ζin and ζout of the given GNFPA (and, conse-
quently, also another definition of the language of the
pseudo-automaton);

4) vice versa, for the same functions ζin and ζout we
also consider another (complicated) definition of the
language of the given GNFPA.

The main goal of the section is to give definitions of models
slightly different from those introduced above and to formu-
late the main directions of the most detailed studies. Let us
also remark, that an alternative model can be considered, i.e.,

5) the definitions introduced in [6].

1) The alternative definition of the language
In this subsection, we give the alternative definition of the

language of GNFPA.
Firstly, let us consider some notation for permutations.
Definition 7: For a permutation P = (p1, p2, . . . , pn),

where n ≥ 2, let us denote:
• α(P) = p1; i.e., the head considered as an element;
• Ω(P) = (p2, p3, . . . , pn); i.e., the tail considered as

a sequence, which is not empty.�
Definition 8: Let GNFPA G be considered according to

Definition 2. For a permutation P = (p1, p2, . . . , pn), where
n ≥ 1, let us define language

LP (G) = L
(
K(G)

)
∪ L1 · L2 · L3 ,

where languages L1, L2 and L3 are defined in the following
way:
• if n = 1, i.e., P = (p) for simplicity, then

L1 = L
(
G
(
G−p, S, {θin(p)}

))
,

L2 = L
(
G
(
G−p,Θ

in(p),Θout(p)
))
,

L3 = L
(
G
(
G−p, {θin(p)}, F

))
;

• if n ≥ 2, then

L1 = LΩ(P)

(
G
(
G−α(P), S, {θin(α(P))}

))
,

L2 = LΩ(P)

(
G
(
G−α(P),Θ

in(α(P)),Θout(α(P))
))
,

L3 = LΩ(P)

(
G
(
G−α(P), {θin(α(P))}, F

))
. �

In the next paper, we shall prove that two considered
definitions (this one and Main Definition 1) are equivalent,
i.e., they define the same language. As we said before, we do
not obtain the estimates of the complexity of the algorithms
formulated before; we are going to do this thing in the
next paper. However, there is evident, that both algorithms
corresponding to this model (i.e., algorithm for obtaining
corresponding GRE and algorithm checking, whether the
word belongs to the GNFPA) are much less complex than
algorithms corresponding to Main Definition 1.

6

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 6, no.1, 2018

2) Pseudo-automaton obtained on the base
of the canonical NFA

In this approach, all the above definitions are retained in
their original form. We consider ordinary canonical NFAs
with some elements added for functions ζin and ζout (as
before, we consider them as the set of their elements).
Let us briefly describe the process of constructing such an
automaton.

1) We obtain ordinary canonical NFA. But unlike most of
our previous papers ([3], [4], [11], [12]), we consider
here canonical NFA which may have so called “dead”
state; see the details in our quoted papers, for instance,
[9, Footnote 1]. Let the set of canonical NFA be Qπ ,
also like [9].

2) We choose an arbitrary function that assigns to dif-
ferent natural numbers (the set of these numbers will
be T) all different ordered pairs of states of the
constructed automaton.

3) For each such pair (let it be (q, q′) for the chosen t ∈
T), we add to function ζin (it again is considered as
the set) element ζin(t) = (q, {q}).

4) For the considered pair, we also add to function ζout

element ζout(t) = (Qπ \ {q′}, q′).
As we said before, we are going to continue this model

in some next papers. In particular, we prove the correctness
of our constructions (i.e., that we really define the regular
language we need) and also describe some properties of
the obtained automata. For now, we will briefly consider an
example.

In this example, we will continue to explore the language
considered in the above examples of this paper. We can
assume, that automaton of Fig. 8 is a canonical one; and on
the following Fig. 11, we give the same automaton with re-
designation of its stats by A and B (like our usual notation)
and with addition of the “dead” state N :

��
��
��
��
A

n
	a

-

?
��
��
��
��
B

?

-b
-b

�
a ��

��
��
��
N

n
	a, b

Fig. 11

Among the 9 elements of the set being formed, let us select
2 ones, (A,B) and (B,N); apparently, it is most convenient
to denote the corresponding elements of set T by 2 and 6
(because A is the first element, then (A,A) is the first pair,
. . . , (N,N) is the last pair). Let us consider the following
Fig. 12; that is automaton of Fig. 11 with the addition of the
usual notation for functions ζin and ζout, corresponding to
the said elements 2 and 6 of set T .

��
��
A

n
	a

-

?
��
��
B

?

-b
-b

�
a ��

��
N

n
	a, b

�−2

W

−6

*

+2

Y

+2

j

+6
j

+6

Fig. 12

(We can even assume here, that T = { 2, 6 }, not showing in
the figure its other elements. Remark also once again, that
we denote the states of ordinary NFAs by double circles, and
the states of ordinary GNFPAs by single circles.)

3) The simplified definition of pseudo-automaton
Let us distinguish the simplified model from our basic

approach.
• In Definition 2, we change both functions ζin and ζout

for functions of the type

ζin, ζout : T → Q ;

• In Main Definition 1, the three auxiliary pseudo-auto-
mata are the following ones:

1) G→k = G
(
G−k, S, {ζin(k)}

)
;

2) G[k] = G
(
G−k, {ζin(k)}, {ζout(k)}

)
;

3) and Gk→ = G (G−k, {ζout(k)}, F).
All other definitions remain as before.

In this model, it is more convenient to use slightly
modified principles for arrows and symbols in the pictures.
Because values of functions ζin and ζout are single states
(not set of states), then for each t ∈ T , it is more convenient
to write arrows from ζin(t) to ζout(t) marking simply t
(neither −t, nor +t). Let us consider an example, Fig. 13:

����
q1- ����

q2 -
b ����

q3 -
b ����

q4 ����
q5 --

2

-
3

Σ = { a, b }

Fig. 13

R

1

We can prove that for the definition given here, the pseudo-
automaton accepts the same language that we considered all
the above in this paper. 12

4) The complicated definition of pseudo-automaton
As the last model, let us very briefly distinguish the

complicated model from our basic approach. In fact, there is
the only (but extremely important) difference, i.e., in Main
Definition 1, the three auxiliary pseudo-automata are the
following ones:

1) G→k is changed for NFA K
(
G,S, {ζin(k)}

)
;

2) G[k] = G
(
G, {ζin(k)}, {ζout(k)}

)
;

3) Gk→ is changed for NFA K (G, {ζout(k)}, F).
Remark that the first automaton and the last one are written
even easier than ones of the basic model; certainly, their
languages are languages of ordinary NFAs. However, chang-
ing G−k for G in the second automaton greatly complicates
all the corresponding algorithms: we can apply this recursive
definition arbitrarily many times, but the definition is correct.
In this paper, we shall not consider the resulting languages
of this model.

12 It is very important to note that using this approach, we obtain non-
empty languages corresponding, for example, to sequence [2, 1, 3] (not only
for sequences [1, 2, 3] and [1, 3, 3], as in our main approach). However, for
each such sequence, we obtain here the same language.

7

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 6, no.1, 2018

As we said before, we only described the models in this
section. In some next papers, we are going consider them in
detail, in particular, to prove the facts briefly formulated in
this paper.

VII. CONCLUSION

We can say that in this paper, we have only described the
terminology and proved the simple statements. In new paper,
we are going to apply methods, which are similar to those
we considered in previous papers:

1) the consideration of another (equivalent) definition of
the language of the given GNFPA uses the methods
we applied in [5], [6], [13], [14];

2) the consideration of “canonical GNFPA for the given
language” uses the methods we applied in [6], [11],
[12];

3) the consideration of “simplified definition” uses the
methods we applied in [4], [15];

4) and the consideration of “complicated definition” uses
the methods we applied in [3], [6], [13].

REFERENCES

[1] Kirsten D. and Mäurer I. On the determinization of weighted automata.
Journal of Automata, Languages and Combinatorics. 2005, vol. 10,
no. 2/3. pp. 287–312.

[2] Kirsten D. Distance desert automata and the star height problem.
Informatique Théorique et Applications. 2005, vol. 39, no. 3. pp. 455–
509.

[3] Melnikov B. and Vakhitova A.. Some more on the finite automata.
The Korean Journal of Computational and Applied Mathematics. 1998,
vol. 5, no. 3. pp. 495–506.

[4] Melnikov B. Extended nondeterministic finite automata. Fundamenta
Informaticae. 2010, vol. 104, no. 3. pp. 255–265.

[5] Vylitok A., Zubova M. and Melnikov B. Ob odnom rasshirenii klassa
konechnyh avtomatov . . . [About one extension of the class of finite
automata for accepting context-free languages]. Vestnik of Moscow
University. Series 15: Computational mathematics and cybernetics.
2013, no. 1. pp. 39–45. (in Russian)

[6] Baumgärtner S. and Melnikov B. Obobschennye nedeterminirovannye
konechnye avtomaty [Generalizing nondeterministic finite automata].
Izvestiya of Higher Educational Institutions. Volga Region. Phisical and
Mathematical Sciences, 2013, no. 2 (26), pp. 64–74. (in Russian)

[7] Salomaa A. Jewels of Formal Language Theory. Computer Science
Press, 1981, 144 p.

[8] Hromkovič J. Theoretical Computer Science. An Introduction to Au-
tomata, Computability, Complexity, Algorithmics, Randomization, Com-
munication, and Cryptography. Springer, 2003. 321 p.

[9] Melnikov B. The complete finite automaton. International Journal of
Open Information Technologies. 2017, vol. 5, no. 10, pp. 9–17.

[10] Brauer W. Automatentheorie. Eine Einführung in die Theorie endlicher
Automaten. Stuttgart: B. G. Teubner, 1984, 493 S. (in German)

[11] Melnikov B. and Melnikova A. Edge-minimization of non-
deterministic finite automata. The Korean Journal of Computational
and Applied Mathematics. 2001, vol. 8, no. 3. pp. 469–479.

[12] Melnikov B. and Melnikova A. Mnogoaspektnaya minimizaciya nede-
terminirovannyh konechnyh avtomatov . . . [Multi-aspect minimization
of nondeterministic finite automaton (Part I. Auxiliary facts and al-
gorithms)]. Izvestiya of Higher Educational Institutions. Volga Region.
Phisical and Mathematical Sciences, 2011, no. 4, pp. 59–69. (in Russian)

[13] Melnikov B. and Melnikova A. Some properties of the basis finite
automaton. The Korean Journal of Computational and Applied Mathe-
matics. 2002, vol. 9, no. 1. pp. 135–150.

[14] Melnikov B. and Sciarini-Guryanova N. Possible edges of a finite
automaton defining a given regular language. The Korean Journal of
Computational and Applied Mathematics. 2002, vol. 9, no. 2. pp. 475–
485.

[15] Melnikov B. and Sayfullina M. O nekotoryh algoritmah ekviva-
lentnogo preobrazovaniya nedeterminirovannyh konechnyh avtomatov
[On some algorithms for the equivalent transformation of nondeter-
ministic finite automata]. Izvestiya of Higher Educational Institutions.
Mathematics, 2009, no. 4, pp. 67–72. (in Russian)

8

	Introduction and motivation
	The main definitions
	Algorithm for checking whether the word belongs to the language of GNFA
	Diagrams of GNFPAs and examples
	The algorithm of construction of GNFPA by the given generalized regular expression
	The alternative models and some directions for further researches
	Conclusion
	References

