
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 5, no. 12, 2017

Waterloo-like finite automata
and algorithms for their automatic construction

B. F. Melnikov, E. A. Melnikova

Abstract—In the problems of minimization of nondetermin-
istic finite automata, there may be situations, when a covering
set of blocks defines an automaton, which is not equivalent
to the original one. For the first time, such an example was
obtained in 1970 by Kameda and Weiner, and according to
their paper, was given the name Waterloo. The existence of such
constructions (“walibad” in our terminology, from “Waterloo-
like badness”) greatly complicates the description of practical
algorithms for the state minimization of nondeterministic finite
automata. Hence the problems of the search and description
of such constructions arouse, and, where possible, it should be
done before applying the said algorithms of minimization.

In this paper, we propose an example of algorithm for the
transformation of so-called complete automaton given by a table
of binary relation #. At the same time, we know that for this
table for the binary relation #, there exists some corresponding
nondeterministic automaton having Waterloo-like badness. The
proposed transformation, which is not equivalent, is the serial
removal of a state and combining a pair of states. It gives the
opportunity to build on the basis of the given relation # some
automaton which also has the walibad-property. And, generally
speaking, the obtained automaton is different from the known
in advance. We emphasize, that in the process of building we
used only relation #, and did not use automaton known in
advance.

Keywords—nondeterministic finite automata, universal au-
tomaton, covering set of blocks, covering automaton, Waterloo
automaton, basis automaton, complete automaton.

I. INTRODUCTION AND MOTIVATION

This paper can be considered a continuation of [1]: in
that paper, the complete finite automata were considered,
and here we continue to consider the connection of com-
plete automata with the problems of state minimization for
nondeterministic finite automata, see [2]–[9] etc. Note in
advance that the whole direction consists not only of the
theoretical part (including the description of new variants
of minimization algorithms, the proofs of their correctness,
etc.), but also of the practical part. This practical part
includes the development and implementation of heuristics
for minimizing automata with a large number of states,
and we already considered (e.g., in [9]) some algorithmic
questions related to the implementation of the corresponding
heuristic algorithms. The automaton obtained as a result of
vertex minimization 1 can be considered an analogue of the
so-called minimal code µmin(G) of adjacency matrix of a
graph G considered as a complete invariant for the graph, see

Received October 22, 2017.
Boris F. Melnikov, Russian State Social University (email: bf-melnikov@

yandex.ru).
Elena A. Melnikova, Russian State Social University (email:

ya.e.melnikova@yandex.ru).
1 In the presence of some simple formulated criteria ordering such

automata. Such criteria can be easily formulated in some different ways,
in this paper, we will not focus on this problem.

[10] etc. That is, when we consider such a finite automaton,
we obtain one more complete invariant, in addition to the
usual canonical automaton, as well as the basic and universal
automata considered in our previous papers, see [11]–[15]
etc. 2

In the development of practical algorithms for minimiz-
ing nondeterministic finite automata, one must take into
account the possible situation when the covering set of
grids (blocks) 3 defines an automaton (the so-called covering
automaton), not being equivalent to the given one. For the
first time, such an example was obtained by Kameda and
Weiner, and according to their paper [17] was called Water-
loo. Apparently, after that publication (1970), there were no
more published similar examples in the literature, i.e., finite
automata (regular languages) possessing such properties. In
our terminology, the description of this example was briefly
outlined in [7]; below we give a more detailed description.
We call this construction a walibad (from the expression
“Waterloo-like badness”), and any covering subset of the
grid set that does not include all the grids is called proto-
walibad. The presence of walibads greatly complicates the
description of practical algorithms for the state minimization
of nondeterministic finite automata, and, therefore, there are
problems of searching and describing such constructions,
and, if possible, before applying the minimization algorithms.

This paper first shows, how to build a walibad construction
automatically, based on:
• a specific concrete example of walibad, and, therefore,

corresponding table of binary relation # (see [11], [13],
[15] etc.);

• automaton K#, defined by us on the basis of such a
binary relation (such a table) in [1].

This allows to make a descriptions based on one table of the
#-relation only (the relation has to have the above property
proto-walibad):

1) an exhaustive algorithm for constructing walibad;
2) an exhaustive algorithm for checking the necessary

condition for such a construction for an arbitrary
nondeterministic automaton;

3) a classification of all possible tables of the #-relation
(possessing this property) by the condition of the
existence of the walibad-construction corresponding to
this table.

2 Note that according to the facts shown in [1], the complete finite
automaton is also an invariant of the regular language, however, unlike the
other examples mentioned here, it is not a complete invariant of it. The title
“complete” (for the automaton under consideration) is related not to the
completeness of the invariant, but to the completeness of the set of possible
edges, see, e.g., [16].

3 Hereinafter, the terminology associated with the grids is given according
to [3]. In this case, the covering automata are constructed according to [13,
Sect. 4].

8

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 5, no. 12, 2017

This paper has the following structure. In this section, we
briefly describe the used notation. In Sections III and IV,
we consider the Waterloo automaton in detail, and from the
point of view of the theory described in our previous works
cited above. In Section V we define the concepts of proto-
walibad, i.e., covering set of grids that do not coincide with
the whole set of grids, and walibad, i.e. a proto-walibad, for
which there exists a covering automaton that is not equivalent
to the original automaton.

In Section VI, we show how one can obtain some given
automaton having the walibad property (in our case, it
is the Waterloo-automaton), using an exhaustive algorithm
based on the complete automaton K# constructed for the
corresponding regular language. In addition, in this section
we formulate an assertion relating to all regular languages
(and in fact represents one of the possible variants of their
classification): for each regular language, one can determine
whether the walibad property has at least some language with
a binary relation # coincides with this relation for the given
language.

And in Section VII we show, how we can get an au-
tomaton that has a nonequivalent covering automaton using
an algorithm of special “incomplete” combining the letters
of automaton K#. Apparently, the result of this section is
the most important for developing practical minimization
algorithms: in other words, in Section VII we show that in
practice the desired result (i.e., the presence of walibad) can
often be obtained much faster, i.e., long before the end of
the work of some exhaustive algorithm.

In Conclusion, we formulate some possible directions for
further work.

II. PRELIMINARIES

The notations used in our paper will be described very
briefly: almost all the necessary notations and the results of
our previous work needed for this paper were considered
detailed in [1], and before in [11], [13], [15]. We shall
consider nondeterministic finite automaton

K = (Q,Σ, δ, S, F) (1)

without ε-edges, i.e., we shall consider the transition function
δ of automaton (1) as

δ : Q× Σ→ P(Q) .

Some edge δ(q, a) 3 r will usually by written as

q
a−→
δ
r,

or, if it will not cause misunderstandings, simply as q a−→ r.
The language defined by automaton K will be defined as
L(K).

The canonical automaton for some regular language L will
be defined as L̃, besides canonical automata for L and its
mirror image LR will be the following ones:

L̃ = (Qπ,Σ, δπ, {sπ}, Fπ)

and
L̃R = (Qρ,Σ, δρ, {sρ}, Fρ).

Binary relation # ⊆ Qπ × Qρ is defined for the pairs of
states of automata L̃ and L̃R in the following way: A#X
if and only if(

∃uv ∈ L
) (
u ∈ Lin

L̃
(A) , vR ∈ Lin

L̃R
(X)

)
.

The state-marking function ϕin
K : Q → P(Qπ) is defined in

the following way:

ϕin
K(q) 3 q̃ if and only if Lin

K(q) ∩ Lin
L̃

(q̃) 6= ∅ .

And the state-marking function

ϕout
K : Q→ P(Qρ)

is defined similarly for automata KR (the mirror automaton
for K) and L̃R.

Here, we will not determine in detail the basis automaton
BA(L) and the universal automaton COM(L), see [1], [11].
We note only the necessary condition of the existence of
transition B1

a−→
δQ
B2 of automaton COM(L) (i.e., the transi-

tion from the state B1 in the state B2 of automaton COM(L)
labeled by the letter a ∈ Σ; see also [16, Def. 2]):(

∀p ∈ α(B1)
) (
δπ(p, a) ∈ α(B2)

)
(2)

&
(
∀r ∈ β(B2)

) (
δρ(r, a) ∈ β(B1)

)
. (3)

(Based on these conditions, we construct all the transitions
of automaton COM(L). The conditions for input and output
states are less important for this paper; if necessary, see them
in our papers cited before.)

III. CONSIDERATION OF AUTOMATON WATERLOO
ACCORDING TO OUR TERMINOLOGY

In this section we will consider a detailed example, i.e.,
Waterloo automaton. We can consider this example to be
a continuation of the series of examples discussed in [11],
but, more importantly, this example also demonstrates the
possibility of the following situation.

There exists the language and a covered automaton
for it 4, such that this automaton does not define the
given language.

Thus, let us consider automaton Waterloo, see Fig. 1.

��
��
��
��
A -a-

�
�
�

�
�	

��
��
��
��
E

6

b

-

?

a

��
��
��
��
H

�
�
�

�
�	

a

��
��
��
��
F

6

b

-

?

a

��
��
��
��
D� b

�
�
�
�
�
�
�
�
�
�
��

a

��
��
��
��
G

6

a

��
��
��
��
C� a -b ��

��
��
��
B

6

a

�

b

Fig. 1

This automaton is deterministic. Moreover, it does not
contain equivalent states; then for its language, it is the
canonical automaton; then we can denote this automaton by
L̃. It is convenient to consider it in the following Tab. 1. Let

4 I.e., automaton which state-marking functions ϕin and ϕout covered all
the possible pairs of corresponding states of two canonical automata L̃ and
L̃R. See below for details.

9

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 5, no. 12, 2017

us remark that since its determinism, we can consider each
cell of this table by both state and also by the set of states;
such sets can contain more than 1 element.

Tab. 1 Tab. 2

L̃ a b
→ A E –

B F –
C G B
D C H

← E C H
← F B D

G A D
H A –

(L̃)R a b
← A G,H –

B F C
C D,E –
D – F,G

→ E A –
→ F B –

G C –
H – D,E

For obtaining automaton L̃R, it is convenient to use the
procedure of determinization of automaton (L̃)R. Automaton
(L̃)R is shown on Table 2; it is not a deterministic one, then
we have to consider each cell of this table be the set of states.

Let us determinate automaton (L̃)R. We begin to consider
the only its input state; it is convenient to denote it by E,F
(similarly we will do below). This input state corresponds to
the set {E,F}, and, therefore, can be obtained by combining
states E and F of automaton (L̃)R. Then the set (or the
state) A,B appears, therefore we include the corresponding
string in the built automaton; etc. The final states are ones
“containing” the only final state A of automaton (L̃)R; 5 they
are {A} and {A,B}, and we will denote them A and A,B
respectively.

Tab. 3 Tab. 4

a b
→ E,F A,B –
← A,B F,G,H C

F,G,H B,C D,E
C D,E –

B,C D,E, F C
D,E A F,G

D,E, F A,B F,G
← A G,H –

F,G B,C –
G,H C D,E

L̃R a b
→ X Y –
← Y Z U

Z V W
U W –
V P U
W Q R
P Y R

← Q S –
R V –
S U W

Thus, the complete Table 3 of corresponding deterministic
automaton consists of 10 states, including the “old” states A
and C (for convenience, we have regularized states in order
of their “appearance”). Making the usual renaming states, we
obtain Table 4. Evidently, the last automaton does not contain
equivalent states, then we can consider it as the canonical
automaton and denote it by L̃R. And using the renaming
states we also obtain the following Table 5 for binary relation
6:

Tab. 5

X Y Z U V W P Q R S
A # #
B # #
C # #
D # #
E # # #
F # # # #
G # # #
H # #

5 I.e., when we consider them as the sets of states of the deterministic
automaton. Note again, that we have in mind both the combining of the
designations of different states, and (more importantly) the combining of
each pair of cells of the corresponding string in the table.

6 We can obtain it in the following way. For example, in automaton of
both Tables 3 and 4, we renamed state {E,F} by X; therefore we obtain
E#X and F#X . The same procedure has to be used for all the states of
the new automaton.

Using this table, we obtain the following 14 grids 7:

(g1) {A} × {Y,Q} (g2) {A,B} × {Y }
(g3) {B} × {Y, V } (g4) {B,C} × {V }
(g5) {C} × {U, V } (g6) {D,E} × {W,P}
(g7) {E} × {X,W,P} (g8) {E,F} × {X,P}
(g9) {F} × {X,Z, P,R} (g10) {F,G} × {Z,R}
(g11) {G} × {Z,R, S} (g12) {G,H} × {Z, S}
(g13) {F,G,H} × {Z} (g14) {D,E, F} × {P}

Below, we shall use these numbers of grids (states), some-
times without letter “g” and sometimes without round brack-
ets; like [1], this will not cause discrepancies, from the
context it will always be possible to distinguish the grid from
the formula. We shall use them for both automaton COM(L)
and the covering automaton (below, we shall consider the
only such one).
Below, we shall use these numbers of grids (states), some-
times without letter “g” and sometimes without round brack-
ets; like [1], this will not cause discrepancies, from the
context it will always be possible to distinguish the grid
from the formula. We use them for both automaton COM(L)
and the covering automaton (we shall consider the only such
one).

Thus, let us construct automaton COM(L) using obtained
set of grids. For this constructing, let us make Tables 6 and 7
for both the letters of considering alphabet. In both following
tables:
• strings (see column “q”) are marked by the states of

automaton COM(L);
• “δQ” (values of transition functions) is obtained using

combining values δQ(q, a) (or δQ(q, b) for the second
table) for the set of states marking the considered string;

• “α-candidates” are the states, which satisfy condition
(2); 8 here, grid B1 is the label of corresponding string,
and B2 is the label of corresponding column; for in-
stance, we write 10 in the string labeled by 3 (on
Table 6), because grid 3 (i.e., B1 = {B}×{Y, V }) and
grid 10 (i.e., B2 = {F,G} × {Z,R}) satisfy condition
(2);

• “transitions” are results, i.e., in the considered column
of automaton COM(L), we write all the states satisfying
both the conditions (2),(3).

Tab. 6 (for a)

q α(q) β(q) δQ α-candidates transitions

→1 A Y,Q E 6, 7, 8, 14 6, 7, 8, 14
→2 A,B Y E, F 8, 14 8, 14
3 B Y, V F 8,9,10,13,14 8,9,10,13,14
4 B,C V F,G 10, 13 10, 13
5 C U, V G 10,11,12,13 10,11,12,13
6 D,E W,P C 4, 5 4, 5
←7 E X,W,P C 4, 5 4, 5
←8 E,F X, P B,C 4 4
←9 F X,Z,P ,R B 2, 3, 4 2, 3, 4
10 F,G Z,R A,B 2 2
11 G Z,R, S A 1, 2 1, 2
12 G,H Z, S A 1, 2 1, 2
13 F,G,H Z A,B 2 2
14 D,E,F P B,C 4 4

Let us remark, that two last columns on Table 6 coincide;
however, for Table 7 (we construct it similarly for letter b)
such a fact is false:

7 Compare corresponding constructions in [1].
8 Maybe, not both (2) and (3) simultaneously.

10

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 5, no. 12, 2017

Tab. 7 (for b)

q α(q) β(q) δQ α-candidates transitions

→1 A Y,Q – – –
→2 A,B Y – – –
3 B Y, V – – –
4 B,C V B 2, 3, 4 –
5 C U, V B 2, 3, 4 2, 3, 4
6 D,E W,P H 12, 13 12, 13
←7 E X,W,P H 12, 13 12, 13
←8 E,F X, P D,H – –
←9 F X,Z,P ,R D 6, 14 6, 14
10 F,G Z,R D 6, 14 6, 14
11 G Z,R, S D 6, 14 6, 14
12 G,H Z, S D 6, 14 –
13 F,G,H Z D 6, 14 –
14 D,E,F P D,H – –

Combining two last tables, we obtain automaton COM(L),
which is given on Table 8:

Tab. 8

COM(L) a b

→ 1 6, 7, 8, 14 –
→ 2 8, 14 –

3 8, 9, 10, 13, 14 –
4 10, 13 –
5 10, 11, 12, 13 2, 3, 4
6 4, 5 12, 13

← 7 4, 5 12, 13
← 8 4 –
← 9 2, 3, 4 6, 14

10 2 6, 14
11 1, 2 6, 14
12 1, 2 –
13 2 –
14 4 –

And Table 9 demonstrates the process of determinization
of automaton COM(L); it can be also used for obtaining
functions ϕin and ϕout of the considered language.

Tab. 9

a b

→ 1, 2 6, 7, 8, 14 –
← 6, 7, 8, 14 4, 5 12, 13

4, 5 10, 11, 12, 13 2, 3, 4
12, 13 1, 2 –

10, 11, 12, 13 1, 2 6, 14
2, 3, 4 8, 9, 10, 13, 14 –
6, 14 4, 5 12, 13

← 8, 9, 10, 13, 14 2, 3, 4 6, 14

The last automaton is equivalent to the given one; we can
obtain the given automaton (Fig. 1), renaming states 9 in the
following way:

{1, 2} = A, {2, 3, 4} = B,

{4, 5} = C, {6, 14} = D,

{6, 7, 8, 14} = E, {8, 9, 10, 13, 14} = F,

{10, 11, 12, 13} = G, {12, 13} = H.

Below, we shall also use the basis automaton for this
language; we consider only the table of its transition function,
without detailed algorithm of its construction. Thus, BA(L)
can be described in the following way, see Tab. 10. 10

9 Or sets of states, if we consider cells of Table 9 as the sets.
10 Similarly to [1], we denote 20 its states like A#X etc., instead of the

usual notation A
X

.

Tab. 10

BA(L) a b

→ A#Y E#X,E#P –
→ A#Q E#W –

B#Y F#X,F#P –
B#V F#Z,F#R –
C#U G#S B#Y,B#V
C#V G#Z,G#R –
D#W C#U H#Z,H#S
D#P C#V –

← E#X – –
E#W C#U H#Z,H#S
E#P C#V –

← F#X – –
F#Z B#Y –
F#P B#V –
F#R – D#W,D#P
G#Z A#Y –
G#R – D#W,D#P
G#S A#Q –
H#Z A#Y –
H#S A#Q –

Remark that we obtain the loop

B#Y
a−→ F#P

a−→ B#V
a−→ F#Z

a−→ B#Y ; (4)

we shall use this fact below.

IV. AUTOMATON WATERLOO
AND AN NONEQUIVALENT COVERING AUTOMATON

Let us now show the existence of automaton, for which:
• its states have marking functions ϕin and ϕout covering

all the elements of considered relation #; 11

• there exist all the possible transitions; in other words, we
choose all the transitions of automaton COM(L) (i.e.,
the transitions satisfying both the conditions (2),(3)); 12

• however, its language is not equal to L (i.e., language
of the given automaton).

For this thing, we consider grids corresponding the following
states of automaton COM(L):

g1, g3, g5, g6, g8, g10, g12,

or, simply,
1, 3, 5, 6, 8, 10, 12; (5)

evidently, that all the 20 elements of relation # (Tab. 5) are
covered by these states. 13

Constructing all the possible transitions (i.e., transitions
satisfying (2),(3)), we obtain automaton of Table 11. 14

11 Let us consider this thing detailed. State 10 of automaton of Ta-
bles 6 and 7 has the following values of marking function: ϕin

K(10) =
{F,G} and ϕout

K(10) = {Z,R}. Then this state covers the following
elements of relation #: F#Z, F#R, G#Z and G#R. There exist some
possible sets of such states, where corresponding pairs (like F#Z) cover
all the elements of considered relation #.

12 Let us remark, that using [1], we can define some such automaton by
its state-marking functions or by corresponding relation #. In other words,
using the theory given in [16], we can define all possible transitions for
a finite automaton defining a given regular language, knowing the state-
markings function of of its states.

13 Remark that the algorithms of constructing such a set of grids
is a hard problem, see [2] etc. Some possible approaches for making
heuristic algorithms for this problem were considered in the papers cited
in Introduction, including some our papers; see also [18], [19].

14 By [1], [15], another way of constructing such covering automaton is
the sequent elimination of states of automaton COM(L). More detailed, we
remove states which do not belong to set (5), and also corresponding edges.

11

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 5, no. 12, 2017

The determinization of this automaton gives automaton of
Table 12.

Tab. 11 Tab. 12

a b

→ 1 6, 8 –
3 8, 10 –
5 10, 12 3
6 5 12

← 8 – –
10 – 6
12 1 –

a b

→ 1 6, 8 –
← 6, 8 5 12

5 10, 12 3
12 1 –

10, 12 1 6
3 8, 10 –
6 5 12

← 8, 10 – 6

After that, we rename states in the following “natural”
way:

{1} = A, {3} = B, {5} = C, {6} = D,

{6, 8} = E, {8, 10} = F, {10, 12} = G, {12} = H.

This renaming gives automaton of Table 13:
Tab. 13

a b

→ A E –
B F –
C G B
D C H

← E C H
← F – D

G A D
H A –

Evidently, it is nonequivalent to the given one, because it
state F do not contain a-transition, and all other transitions,
inputs and outputs coincide with the same objects of the
given automaton (Tab. 1).

V. PROTO-WALIBADS AND WALIBADS

In this section we consider the strict definitions of proto-
walibads and walibads.

Definition 1: Any covering subset of a set of grids that
includes not all grids (and also the corresponding covering
automaton) will be called having the property of proto-
walibad (or simply proto-walibad).�

Example 1: Consider the following table of relation #:
Tab. 14

X Y Z
A # #
B # # #
C # #

For this relation, we have the following grids:

(g1) {A,B} × {X,Y } (g2) {B,C} × {Y,Z}
(g3) {B} × {X,Y, Z} (g4) {A,B,C} × {Y }

A proto-walibad is the set consisting of grids (g1) and
(g2). 15 �

Definition 2: If for the given regular language (or for
the given finite automaton) there exists a proto-walibad, for

15 Remark once again, that by [1], we can construct finite automaton
corresponding the given table of relation #. It can be also shown, that if
automaton Ł# is chosen as such automaton, then, according to Definition 1,
it can also be called a proto-walibad.

which the corresponding covering automaton is not equiv-
alent to the given automaton, then the given language (the
given automaton) is called walibad. 16 �

Remark that automaton Waterloo satisfies this definition
(see Sections III and IV). However we can show, that
considering language of Example 1, we can show that there
exists no walibads having the table of relation # (i.e., there
exist proto-walibads which are not walibads). For instance,
this fact can be shown by brute force algorithm which may
be implemented using the remainder of this paper. However,
we shall not consider this example in more details. And,
of course, there are regular languages that do not have the
property proto-walibad; the simplest example is the language
which can be defined by regular expression

(a+ ab+ ba)∗.

VI. CONSTRUCTION OF WALIBADS USING RELATION #

In this section we shall show, how we can get a walibad
(in particular, the Waterloo automaton) in an exhaustive way
based on the complete automaton K# and the theory given
in [1] (that is, actually, based on the binary relation # only).
It is important to note that in this section, the constructions
are carried out for some already known walibad.

Remark that the language of its automaton L# includes
80 letters (i.e., the table of transition of automaton K# for
language Waterloo includes 80 columns), this is a lot for
detailed consideration. Therefore, unlike [1], we do not give
the entire table in this paper, we shall consider the used
letters only. Moreover, unlike [1], the edges and letters of
the alphabet Σ#, corresponding to the different letters of the
source language (i.e., to a and b), we shall give more details
in different tables.

Thus, consider automaton Waterloo once again. Let us
write out from the table of the automaton K# all the columns
with marks corresponding to the letter a (they are painted in
Tab. 15, 15′, like [1]):

Tab. 15
E
Y

F
Y

A
Z

B
Z

G
U

F
V

→ A E F
B E F F
C G F
D
← E
← F A B
G A B
H A B

Tab. 15′

G
V

C
W

B
P

C
P

E
Q

A
S

→ A E
B G
C
D C B C
← E C B C
← F B C
G A
H A

Let us remark, that for each row of the obtained table, all
the painted cells have the same value; besides, their value is
the value of transition function of canonical automaton (see
before). Then we can combine all corresponding columns

16 Remind that covering automata are constructed according to [13,
Sect. 4].

12

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 5, no. 12, 2017

of the obtained table by the brute force algorithm while the
process of obtaining a walibad, “absorbing” unmarked cells
by marked ones; see Tab. 16 for letter a:

Tab. 16

K# a
→ A E

B F
C G
D C

← E C
← F B

G A
H A

Similarly we use the given letter b (see Tab. 17 and Tab. 18
below). Thus, combining tables for letters a and b, we
obtain transition function for (canonical) automaton Waterloo
(compare Tab. 1).

Tab. 17 Tab. 18
B
U

H
W

D
R

→ A
B
C B
D H
← E H
← F D
G D
H

K# b
→ A –

B –
C B
D H

← E H
← F D

G D
H –

Evidently, the same automaton can be obtained by the
brute force algorithm, even not knowing corresponding basis
automaton. To do this, we “only” need:
• to sort through all the possible sets of markers of cells

(i.e., edges) of automaton K#;
• for each of these sets, to construct the combined

columns of the transition matrix;
• to obtain the original automaton Waterloo after such

combining.
Thus, using the example of the automaton Waterloo,

we demonstrated the possibility of a simple proof of the
following statement.

Proposition 1: If for some given table of a binary relation
#, there exists an automaton for which the some its covering
automaton is not equivalent to the given one, then this
given automaton can be obtained in an exhaustive way on
the basis of automaton K# and some transformation of
this automaton, performed on the basis of the sequence of
transformations described in [1, Prop. 4]:

1) building “starting” automaton K#;
2) deleting some its edges;
3) renaming some edges (i.e., changing their marking

letters) – perhaps, marking some edges by different
new letters;

4) renaming marks of some edges by possible marking
some existing different edges by one new letter.�

A strict proof is constructed in an obvious way similarly to
the process described in this section, with the replacement of
a specific automaton (language) by an arbitrary one. 17 It can
also be said that this statement follows from the material
of [1].

17 Of course, when speaking of a specific automaton (regular language)
we mean both Waterloo and some other automaton (language) that has the
same properties. However, other examples (except Waterloo) are not known
to us (except for the language we obtained below on the basis of the same
automaton Waterloo).

And the following statement (the corollary of the previous
one) can be considered as belonging to all the regular
languages: for each of them, we can determine whether
at least one regular language possessing the given binary
relation # has the walibad property.

Proposition 2: For some given binary relation #, which
has the proto-walibad property, there is an exhaustive al-
gorithm, described on the basis of combining the arcs of
automaton K#, determining whether there is a walibad
having the given binary relation.�

VII. AN EXAMPLE OF INCOMPLETE COMBINING
TRANSITIONS OF A COMPLETE AUTOMATON

In this section, we show by example that to answer the
question whether some proto-walibad is walibad, we can not
even combine the states of a complete automaton before 18

the given automaton is received, i.e., before we obtain the
automaton, about whom it is known in advance that it is a
walibad. We already noted in Introduction that we consider
the result of this section to be the most important for the
development of practical minimization algorithms, because
it is very useful in the process of vertex minimization of
the automaton to know in advance whether the minimized
language (automaton) is walibad. Moreover, in the example
we will consider the same language: Waterloo.

Consider Tab. 5 once again. There was already mentioned,
that we show in the table only a subset of letters for
automaton K#. (The full table consists of 80 letters.) It is
very important to remark the following thing: although the
considered table of # is also such a table for the language
Waterloo, but it is possible to show, that automaton K# has
no walibad property. 19 (However, it certainly has the proto-
walibad property.)

Thus, let us consider the following Tab. 19, 19′, which can
be obtained combining Tab. 15, 15′ and 17:

Tab. 19

a a a a b a a a
E
Y

F
Y

A
Z

B
Z

B
U

G
U

F
V

G
V

→ A E F
B E F F G
C B G F G
D
← E
← F A B
G A B
H A B

Tab. 19′

a b a a a b a
C
W

H
W

B
P

C
P

E
Q

D
R

A
S

→ A E
B
C
D C H B C
← E C H B C
← F B C D
G D A
H A

Thus, in Table 19, 19′, we have given only the letters of the
automaton K# constructed for the Waterloo language, which
are necessary for the following construction. We gave these

18 In practice: long before.
19 The detailed construction, proving this fact, is very cumbersome, and

we omit it.

13

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 5, no. 12, 2017

letters (according to definition of [1, Sect.V], these letters,
but not only they, belong to alphabet Σ#) in the convenient
order, i.e., in the order given of [1, Sect.V].

Let us consider some more comments to Table 19, 19′.
As we already said, we continue to consider automaton
K# for binary relation # of automaton Waterloo, and 30
edges of its basis automaton (Tab.,10) corresponds to 15
edges of automaton (columns of of Tab. 19, 19′), i.e., 15 its
letters. In the first line, we show the letter of corresponding
edge of automaton Waterloo by its transition function of
Tab. 1. In the second line, we show double subscript of
corresponding letter of automaton K#, see some details of
such construction in [1, Sect.V]. Initial state (A) and final
states (E and F) of automaton of this table also correspond
to initial and final states of the canonical automaton for
language Waterloo. In 15 chosen columns of automaton K#,
we painted cells (transitions) corresponding to transitions of
the basis automaton. The number of painted cells is less than
30: for example, the left top cell of this table corresponds 2
transitions of the basis automaton, namely

A#Y
a−→E#X and A#Y

a−→E#P.

Now, we shall make one of possible variant of combining
some columns (as we said in [1, Sect.VII], we use a special
version of the combination of letters (i.e., we “absorb” un-
marked cells by marked ones). Namely, our algorithm gives
the positive result by the following variant of combining
columns (i.e., letters of alphabet of automaton K#):
• columns marked B

Z , C
W , B

P , C
P and A

S are combining
together (remark that we have no other painted cells in
these columns);

• and each other column is not used for combining.
In such a way, we obtain the following automaton:

Tab. 20

a b c d e f g h i j k
→ A E F E
B E F F G
C B G F G
D C H
← E C H
← F A B D
G A A D
H A A

(We re-denoted 11 letters of used alphabet by a, b, . . . , k.)
Thus, since now, we shall consider the last automaton as the
given one.

We omit the process of its determinization; its obtaining
table of relation # (denoting obtained states of canonical
automaton for mirror language LR in the same way, as we did
for Tab. 4) coincides with the original relation # considered
before.

After constructing next objects (which are similar to ob-
jects constructed in Section III; see also [13], [20]) we obtain
the following universal automaton COM(L), see Tab. 21, 21′

below. 20 Let us remark, that the values of its state-marking
functions ϕin and ϕout (which are given in the first column
together with numbers used for names of states) also coin-
cides with numbers used in Section III. As before, we omit
the symbols of sets (the braces): for instance, we write Y Q

20 To reduce the size of the table, we did not specify corresponding pairs
of states of automata L̃ and L̃R in it. We indicated this correspondence
above, and also shall give it below once again.

and 6 7 8 14 instead of {Y,Q} and {6, 7, 8, 14} respectively.
The equivalence of the last and the given automata could be
proved in the usual way.

Tab. 21

COM(L) a b c d e f

→ (1) 6 7
8 14

8 9 10
13 14

→ (2) 6 7
8 14

8 9 10
13 14

(3) 6 7
8 14

8 9 10
13 14

(4)

(5) 2 3 4
10 11
12 13

(6) 4 5

← (7) 4 5

← (8) 4

← (9) 1 2 2 3 4

(10) 1 2 2

(11) 1 2 1 2

(12) 1 2 1 2

(13) 1 2 2

(14) 4

Tab. 21′

COM(L) g h i j k

→ (1) 6 7
8 14

→ (2)

(3) 8 9 10
13 14 10 13

(4) 8 9 10
13 14 10 13

(5) 8 9 10
13 14

10 11
12 13

(6) 12 13

← (7) 12 13

← (8)

← (9)

(10) 6 14

(11) 6

(12)

(13)

(14)

Using obtained universal automaton, we construct the
following covered automaton, choosing the subset of the
set of grids of universal automaton {1, 3, 5, 6, 8, 10, 12}
(similarly to Section IV):

Tab. 22

a b c d e f

→ (1) A× Y Q 6 8 8 10
(3) B × Y V 6 8 8 10
(5) C × UV 3 10 12

(6) DE ×WP 5
← (8) EF ×XP

(10) FG× ZR 1
(12) GH × ZS 1 1

14

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 5, no. 12, 2017

Tab. 22′

g h i j k

→ (1) A× Y Q 6 8
(3) B × Y V 8 10 10
(5) C × UV 8 10 10 12

(6) DE ×WP 12
← (8) EF ×XP

(10) FG× ZR 6
(12) GH × ZS

The last automaton is not equivalent to the given one; this
fact can be shown, for example, also similarly to Section IV:
the last automaton has no loop corresponding to the loop of
basis automaton

B#Y
a−→ F#P

d−→ B#V
g−→ F#Z

c−→ B#Y (6)

(compare (4)). Remark that edges of this “missing” loop
correspond to edges of the “missing” loop of the covered
automaton considered in Section IV. It is also important to
remark, that the last automaton does contain loop marked
adgc; however, this loop does not correspond the above
loop (6). Anyway, the nonequivalence of the two these
automata (on Tab. 22, 22′ and Tab. 20) can be simple shown
by constructing two equivalent canonical automata.

VIII. CONCLUSION

Thus, in the present paper we have considered algorithms
for automatic construction of automata, where the covering
finite automaton turns out to be nonequivalent to the original
one. The continuation of this work is supposed in two
directions:

1) to build a special classification of regular languages
based on the existence / non-existence of similar struc-
tures;

2) to describe in detail the application for auxiliary algo-
rithms recognizing the existence of these constructions
in algorithms for minimization of nondeterministic
finite automata. 21

We have already realized some corresponding computer
programs, [9]. Using described in this paper auxiliary heuris-
tic algorithms and having the table of language Waterloo
as the only input, we obtained the desired result (i.e.,
automaton on Tab. 22, 22′, which is walibad) in about 200
hours of computer time (CPU clock speed was about 3 GHz).
Therefore, as we said before, we consider as the main result
the possibility of obtaining in the near future answer of
the question, whether or not Waterloo is the “minimal”
automaton having walibad property over the alphabet of 2
letters. (The minimality can be defined in some natural ways,
for example, by the number of states of corresponding basis
automaton, of by product of number of states of automata L̃
and L̃R.)

Also, further practical work can be carried out in the
directions of our papers cited above and [21], [22].

21 Above we have already noted that to create effective computer
programs for NFA-minimization, it is desirable to be able to determine in
advance (i.e., long before the full processing of the given regular language)
the presence of walibad. Here it is possible to consider an analogy with the
branch-and-bound method, including incomplete one: for the majority of
problems solved by it, it, generally speaking, does not guarantee obtaining
the optimal solution in an acceptable time, but almost always gives very
good results.

REFERENCES

[1] Melnikov B. The complete finite automaton. International Journal of
Open Information Technologies. 2017, vol. 5, no. 10, pp. 9–17.

[2] Jiang T. and Ravikumar B. Minimal NFA problems are hard. SIAM J.
Comput. 1993, vol. 22, no. 6, pp. 1117–1141.

[3] Melnikov B. Once more about the state-minimization of the nonde-
terministic finite automata. The Korean Journal of Computational and
Applied Mathematics. 2000, vol. 7, no. 3, pp. 655–662.

[4] Polák L. Minimalizations of NFA using the universal automaton. Inter-
national Journal of Foundations of Computer Science. 2005, vol. 16,
no. 5, pp. 999–1010.

[5] Melnikov B., Radionov A., Moseev A. and Melnikova E. Some specific
heuristics for situation clustering problems. Proceedings of the 1st
International Conference on Software and Data Technologies, ICSOFT-
2006. Setubal, Portugal. 2006, pp. 272–279.

[6] Geldenhuys J., van der Merwe B. and van Zijl L. Reducing nonde-
terministic finite automata with SAT solvers. Springer. Finite-State
Methods and Natural Language Processing. Lecture Notes in Computer
Science. 2010, vol. 6062, pp. 81–92.

[7] Melnikov B. and Tsyganov A. The state minimization problem for
nondeterministic finite automata: The parallel implementation of the
truncated branch and bound method. Proceedings of the International
Symposium on Parallel Architectures, Algorithms and Programming,
PAAP-2012. Taipei, Taiwan. 2012, pp. 194–201.

[8] Yo-Sub Han. State elimination heuristics for short regular expressions.
Fundamenta Informaticae. 2013, vol. 128, pp. 445–462.

[9] Krivolapova A., Melnikova E. and Sofonova N. Nekotoryye vspomoga-
tel’nyye algoritmy . . . [Some auxiliary algorithms for construction of
Waterloo-like automata]. Vestnik of Voronezh State University. Series:
System analysis and information technologies. 2016, no. 4, pp. 20–28.
(in Russian)

[10] Gera R., Hedetniemi S., and Larson C., editors. Graph Theory: Fa-
vorite Conjectures and Open Problems – 1. Springer, 2016, 291 p.

[11] Melnikov B. Once more on the edge-minimization of nondeterministic
finite automata and the connected problems. Fundamenta Informaticae.
2010, vol. 104, no. 3. pp. 267–283.

[12] Melnikov B. and Zubova M. Postroenie avtomata COM
. . . [Construction of automaton COM on the base of the basis
automaton]. Vektor Nauki of Togliatti State University, 2010, no. 4,
pp. 30–32. (in Russian)

[13] Dolgov V. and Melnikov B. Postroenie universalnogo konechnogo
avtomata. I. Ot teorii . . . [Construction of the universal finite automaton.
I. From the theory to the practical algorithms]. Vestnik of Voronezh
State University. Series: Physics. Mathematics, 2013, no. 2, pp. 173–
181. (in Russian)

[14] Dolgov V. and Melnikov B. Postroyeniye universal’nogo konechnogo
avtomata. II. Primery . . . [Construction of universal finite automaton. II.
Examples of work of algorithms]. Vestnik of Voronezh State University.
Series: Physics. Mathematics, 2014, no. 1, pp. 78–85. (in Russian)

[15] Melnikov B. and Dolgov V. Some more algorithms for Conway’s
universal automaton. Acta Univ. Sapientiae, Informatica. 2014, vol. 6,
no. 1, pp. 5–20.

[16] Melnikov B. and Sciarini-Guryanova N. Possible edges of a finite
automaton defining a given regular language. The Korean Journal of
Com. and Applied Mathematics. 2002, vol. 9, no. 2., pp. 475–485.

[17] Kameda T. and Weiner P. On the state minimization of nondetermin-
istic finite automata. IEEE Trans. on Comp. 1970, vol. C-19, no. 7,
pp. 617–627.

[18] Baumgärtner S. and Melnikov B. Multievristicheskiy podkhod k prob-
leme . . . [Multiheuristic approach to the problem of star-height mini-
mization of nondeterministic finite automata]. Vestnik of Voronezh State
University. Series: System analysis and information technologies. 2010,
no. 1, pp. 5–7. (in Russian)

[19] Melnikov B., Pivneva S., Melnikova E. and Rudnitskiy V. Parallelnaya
realizatsiya zadach . . . [The parallel implementation of the optimization
problems on the base of multiheuristic approach]. Samara, ASGARD
Ed., 2017. 70 p. (in Russian)

[20] Lombardy S. and Sakarovitch J. The Universal Automaton. in: Logic
and Automata, Texts in Logic and Games Amsterdam Univ. Press. 2008,
vol. 2, pp. 457–504.

[21] Melnikov B., Tsyganov A. and Bulychov O. A multi-heuristic algo-
rithmic skeleton for hard combinatorial optimization problems. Pro-
ceedings of the 2009 International Joint Conference on Computational
Sciences and Optimization, CSO. Sanya, Hainan. 2009, pp. 33–36.

[22] Melnikov B., Pivneva S. and Rogova O. Reprezentativnost’ sluchayno
sgenerirovannykh . . . [Representation of randomly generated nonde-
terministic finite automata from the view of the basis automata].
Stochastic Optimization in Informatics, 2010, vol. 6, no. 1-1, pp. 74–82.
(in Russian)

15

	Introduction and motivation
	Preliminaries
	Consideration of automaton Waterloo according to our terminology
	Automaton Waterlooand an nonequivalent covering automaton
	Proto-walibads and walibads
	Construction of walibads using relation #
	An example of incomplete combiningtransitions of a complete automaton
	Conclusion
	References

