
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 5, no. 10, 2017

The complete finite automaton

B. F. Melnikov

Abstract—There is well-known, that for the description of a
regular language, there are different complete invariants: not
only well-known canonical automata, but also basis automata
and universal automata. While constructing basis and universal
automata, there is necessary to construct canonical automata
for both a given regular language and its mirror image. In the
process of such a construction, we get, among other objects,
a special binary relation #, defined on the pairs of states of
these two canonical automata. This relation is also an invariant
(the incomplete one) for the given regular language. For each
such binary relation, there is an entire subclass of the class of
regular languages, that possesses it. Therefore, on the set of
all regular languages, there is possible to define an (another)
binary relation; it holds for some two languages, if and only
if they have the same binary the relation #. It is obvious,
that the binary relation defined in this way is the equivalence
relation on the set of all regular languages. The question
arises of the “most typical” language which is the element
of such class equivalence with respect to the last relation.
In this paper, we describe languages that can be considered
as “typical elements”, construct canonical finite automata for
such languages, consider some of their properties. The main of
these properties is the following: from such an automaton, using
special transformations, we can obtain any canonical automaton
whose language corresponds to the given binary relation #.

Keywords—regular languages, nondeterministic finite au-
tomata, invariants.

I. INTRODUCTION

There is well-known, that for the description of a regular
language, there are different invariants: not only well-known
canonical automata, but also basis automata ([1], [2], [3] etc.)
and universal automata ([4], [5] etc.). More precisely, each
of these invariants could be called a complete invariant.

In considering both the basis and universal automata (in
our terminology, the last automaton for a given regular lan-
guage L is more accurately called the automaton COM(L)),
we need to construct canonical automata both for the given
L and for its mirror image LR. In the process of such a
construction, we get, among other things, a special binary
relation given on the state pairs of these two canonical
automata; according to our terminology, this is the relation
#. Of course, this relation is also an invariant of the regular
language (although, as elementary it is shown, it is not its
complete invariant).

From the latter it follows that for every binary relation
(which is subject to some limitations, which, however,
for this paper is unprincipled), there exists a whole subclass
of the class of regular languages with this relation #. In
addition, on the set of all regular languages one can define
a binary relation (let R) that holds for some two languages
if and only if (for some re-designation of the states of
two finite automata for these languages) they get the same

Received September 14, 2017.
Boris F. Melnikov, Russian State Social University (email:

bf-melnikov@yandex.ru).

binary relation #; it is obvious that the binary relation R
defined in this way on the set of all regular languages is an
equivalence relation. Thus, the question arises of the “most
typical” language, which could be called an representative
of the equivalence class with respect to R.

In this paper, we describe languages that can be considered
similar to the “typical representatives” of such equivalence
classes. For this thing, we construct by it a canonical finite
automaton depending on the given binary relation # (or
according to a given defining table); in other words, we
construct the regular language depending on it.

It is such an automaton (the complete one, denoted here
by K#) is the main object of consideration in the paper. We
consider detailed examples, some properties of the automaton
K# and the language L# defined by it, and also show, how
starting by K#, there is possible to obtain any canonical
automaton whose language corresponds to a given table
of the binary relation # by special transformations; these
transformations include letter renaming, than they can not
be called equivalent.

The structure of this paper is as follows. Section II briefly
describes the notation and some facts from our previous
publications on related topics. In Section III we consider in
details, on a meaningful example, the work of algorithms for
constructing auxiliary objects used in the paper. In Section IV
we consider the formal definition of the complete automaton,
and in Section V we describe a detailed example of its
construction.

In the Sections VI and VII we present one of the main
results of this paper, i.e., the possibility of constructing any
finite automaton from the corresponding a priory given bi-
nary relation # by applying special operations to automaton
K#. Namely, in Section VI the example of transformations
is informally considered, and further in Section VII a formal
description of the actions is given and the correctness of the
described algorithm is shown. This description of the con-
struction process shows the connection between canonical,
basis and complete automata.

In Conclusion we formulate the main results of this article
and the directions for further research.

II. PRELIMINARIES

This section briefly describes the notation and some facts
from our previous publications on related topics, see [2], [5],
[6]. Let

K = (Q,Σ, δ, S, F) (1)

be some finite automaton (nondeterministic Rabin-Scott’s
automaton), defining regular language L = L(K). Q is the
set of states, S ⊆ Q and F ⊆ Q are sets of initial and final
states respectively. We shall consider transition function δ of
automaton (1) as

δ : Q× Σ→ P(Q) ,

9

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 5, no. 10, 2017

but not as
δ : Q× (Σ ∪ {ε})→ P(Q) ,

where the notation P(Q) denotes the superset (the power
set) of the set Q; thus, we shall consider automaton without
ε-transitions. We will usually write some edge δ(q, a) 3 r
in the form q

a−→
δ
r, or, if it does not cause discrepancies,

simply in the form q
a−→ r.

The mirror automaton for the automaton given in (1), i.e.,

(Q,Σ, δR, F, S),

where
q′

a−→
δR

q′′ if and only if q′′
a−→
δ
q′,

will be denoted by KR; note that KR defines the language
LR.

Further in this section, we shall consider the regular
language L to be given and use the notations defined in
the cited papers for it. For the considered language L, its
automaton of canonical form will be denoted by L̃. Let
automata L̃ and L̃R for the given language L be as follows:

L̃ = (Qπ,Σ, δπ, {sπ}, Fπ)

and
L̃R = (Qρ,Σ, δρ, {sρ}, Fρ).

Moreover, we do not consider the language L = 6o, so both
these automata do have initial states. 1

Let us recall definitions of binary relation # and state-
marking functions ϕin and ϕout, see for details [2]. Relation
⊆ Qπ × Qρ is defined for pairs of states of automata L̃
and L̃R in the following way: A#X if and only if(

∃uv ∈ L
) (
u ∈ Lin

L̃
(A) , vR ∈ Lin

L̃R
(X)

)
.

Note that such a definition is non-constructive; however, for
example, [2] contains also its equivalent constructive variant
(i.e., the definition-algorithm).

State-marking function ϕin
K : Q → P(Qπ) is defined in

the following way:

ϕin
K(q) 3 q̃ if and only if Lin

K(q) ∩ Lin
L̃

(q̃) 6= 6o .
And state-marking function

ϕout
K : Q→ P(Qρ)

is defined similarly for automata KR (the mirror automaton
for K) and L̃R.

The definition for basis automaton for the given regular
language L could be found also in [2]. In this paper, it will
be defined by

BA(L) =
(
Q̂,Σ, δ̂, Ŝ, F̂

)
.

Binary relation # defined in the above manner forms also
the set of so-called pseudo-grids (see [5], etc.): namely, each
of them is a pair (P,R) (where P ⊆ Qπ and R ⊆ Qρ), such
that for each pair of states p ∈ P and r ∈ R condition p#r
holds. Each of such pseudo-grids corresponds to the state of
any particular automaton for the given language. Moreover,

1 Like [2], we call by canonical automaton a deterministic automaton,
containing the minimum possible number of states. In this case, it is also
like [2], we do not require the everywhere-defining of this automaton, and,
therefore, do not consider the possible “dead state”.

the necessary condition for defining the given language
by a finite automaton is that the subset of pseudo-grids
corresponding to the set of states of considered automaton
cover all the items of the relation #.

And if for some pseudo-grid (P,R) we can not extend
neither set P nor the set R in order to not violate the
definition of a pseudo-grid, then we call such a pseudo-grid
by a grid.

Examples of the objects considered here were considered
in detail in the works cited above. And it is important to
note that all the definitions are constructive 2, i.e., they forms
algorithms for constructing such objects.

On the blocks considered by the states, we define au-
tomaton COM(L); its definition, examples and some related
concepts can be found in [5]. 3

For the future, there is very important the condition for
the existence of an edge (a transition) B1

a−→
δQ
B2 (transition

from B1 into B2 in automaton COM(L), labeled by letter
a ∈ Σ; see also [7, Def. 2]):(

∀p ∈ α(B1)
) (
δπ(p, a) ∈ α(B2)

)
&(

∀r ∈ β(B2)
) (
δρ(r, a) ∈ β(B1)

)
.

(On the basis of these conditions, all the transitions of the
automaton COM(L) are made. Conditions for input and
output states for this article are less important; if necessary,
see them in the cited works.)

Thus, we can assume that by considering some given
regular language L, we simultaneously introduce the notation
for the related language:

• two canonical automata (i.e., L̃ and L̃R), and also their
states, their transition functions etc.;

• binary relation # defined on pairs of states of automata
L̃ and L̃R;

• state-marking functions ϕin and ϕout;
• equivalent basis automaton BA(L);
• equivalent automaton COM(L).

III. THE DETAILED CONSIDERATION OF AN EXAMPLE
OF CONSTRUCTING AUXILIARY OBJECTS

Thus, we continue our constructions using the example of
a language and the corresponding automata already consid-
ered in [2], [5]. 4 Let us briefly repeat the automata of these
papers.

Let the given automaton (K, for regular language L) be
given on Fig. 1, and the mirror automaton (KR, for language
LR) be given on Fig. 2.

2 Including, as we have already noted, there exists a constructive definition
of binary relation #.

3 In fact, we actually described this automaton for the first time long
before, in [7], but in that paper we did not use the notation given here.
As we already noted, we subsequently proved that the automaton COM(L)
coincides with the so-called Conway’s universal automaton, [4], [5], [8] etc.

4 This language was first obtained in 1996 using a search algorithm, see
conference abstracts [9]. The algorithm looked for a language that is minimal
in some parameters, which can be defined over a 2-letter alphabet using
some automaton with at most 3 states. In this case, the edge-minimization
algorithm of nondeterministic finite automata was used as an auxiliary,
which we later described in [2]. But back in 1996 the program, implemented
on the basis of this algorithm, received a solution on the available at that
time computer technology.

10

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 5, no. 10, 2017

��
��
��
��
q3����

�b
?

��
��
��
��
q2 ����

Ia, b
?

��
��
��
��
q1

?

�
�
�
��

a

�
�
�
��

b

A
A
A
AU

b

Fig. 1

��
��
��
��
q3����

�b
6

��
��
��
��
q2 ����

Ia, b
6

��
��
��
��
q1

6

�
�
�
��

b

�
�
�
��

a
A
A
A
AK
b

Fig. 2

Corresponding canonical automata L̃ and L̃R are given on
Fig. 3 and 4:

��
��
��
��
A- ��

��
��
��
B -

��
��
��
��
C

?

����
�a, b ��

��
��
��
D

?

-a

?
b

� b

?
b

6
a

Fig. 3

��
��
��
��
X- ��

��
��
��
Y -

��
��
��
��
Z

?

����
�b ��

��
��
��
U ����

Ia

-a

?
b

?
a

6
b

�
�
�

�
�=

b

�
�
�
�
�>

a

Fig. 4

Binary relation # for the given language, also obtained in
[2], is given on Tab. 1:

Tab. 1

X Y Z U

A – # # –
B # – # –
C # # # #
D # # # –

In [2], [5], we did not consider basis automaton BA(L)
for this language; its transition function, which is also
constructed by [2], is given on Tab. 2. (For convenience, we

write down the state A
X by A#X , etc. Besides, we do not

write notation for sets, i.e., for example, instead of {AX ,
A
Y },

we write A#X,A#Y .)

Tab. 2
BA(L) a b

→ A#Y B#Z, B#X C#U
→ A#Z – C#Y , C#Z, C#X
← B#X – –

B#Z – D#Y , D#Z, D#X
D#Y B#Z, B#X C#U

← C#X – –
C#Y C#Z, C#X C#U
C#Z – C#Y , C#Z, C#X
C#U C#Y , C#U –

← D#X – –
D#Z – C#Y , C#Z, C#X

In our previous papers cited before [2], [3], [5], we also
did not consider further actions with the basis automaton.
As such further actions, we first select (all) 5 possible grids
based on Tab. 1:

(1) {A,C,D} × {Y, Z},
(2) {A,B,C,D} × {Z},
(3) {B,C,D} × {X,Z},
(4) {C} × {X,Y, Z, U},
(5) {C,D} × {X,Y, Z}.

We shall use the same numbers also in the future, in
particular, to denote the states of new automata. Thus, using
definitions of Section II and of automaton BA(L), we obtain
automaton COM(L), see Tab. 3:

Tab. 3

COM(L) a b
→ 1 2, 3 1, 2, 3, 4, 5
→ 2 – 1, 2, 3, 5
← 3 – 1, 2, 3, 5
← 4 1, 2, 3, 4, 5 1, 2, 3, 4, 5
← 5 2, 3 1, 2, 3, 4, 5

Terminology and constructions related to the so-called
covering automata [5] will not be used in this paper; however,
we propose to use them in the continuation paper, therefore,
we describe briefly such constructions. Thus, it is easy to
show that in the automaton COM(L), there is (and the only
possible one) a covering subset consisting of exactly 3 grids
(namely, blocks 1, 3 and 4), and covering subsets consisting
of 2 grids does not exist. Selecting this subset (ie removing
the blocks 2 and 5 that are not included in it), we obtain a
covering automaton, given in Fig. 5; it is easy to verify that
this automaton is equivalent to the original one.

��
��
��
��
3����

�b
?

��
��
��
��
4 ����

Ia, b
?

��
��
��
��
1 ����

I
b

?

�
�
�
��

a, b

�
�
�
��

b

A
A
A
AU

b

�
a, b

A
A
A
AK

a, b

Fig. 5

11

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 5, no. 10, 2017

Thus, the example above gives an equivalent automaton,
which, as can be easily verified, has the minimum possible
number of states. However, note that in the general case
such a fact is incorrect (see [8]; for the first time the
example was obtained in [10]), i.e., the covered automaton
is not necessarily equivalent to the given one; we assume
to consider in the continuation paper a detailed analysis of
the corresponding example in our terminology, as well as its
relation to the objects defined in this paper.

IV. THE FORMAL DEFINITION
OF THE COMPLETE AUTOMATON

In [3], we defined an auxiliary object, designated there as
an automaton K#; we shall use the same notation below.
The possible use of this automaton in applied problems
(specifically, in the problem of state-minimization of non-
deterministic finite automata) was briefly shown in [11].
However, in both of these papers, there were no detailed
definitions or examples (except either trivial, or, on the
contrary, very complex); a detailed definition and a more
informative explanatory example are given in this paper. So,
as already noted in Introduction, it is the automaton K# that
is our main object of consideration.

For the following, the next statement is important, see [3].
Proposition 1: Let binary relation # be defined on sets

Aπ and Aρ (where |Aπ| = m > 0, |Aρ| = n > 0), i.e.,
⊆ Aπ ×Aρ. Let also the following limitations hold:
• (∀p ∈ Aπ) (∃r ∈ Aρ) (p#r)

(i.e., the table of binary relation # has no empty rows);
• (∀r ∈ Aρ) (∃p ∈ Aπ) (p#r)

(i.e., the table has no empty columns);
• (∀p1, p2 ∈ Aπ, p1 6= p2) (∃r ∈ Aρ)

(
(p1#r& p2#r) ∨

(p1#r& p2#r)
)

(i.e., the table has no identical rows);
• (∀r1, r2 ∈ Aρ, r1 6= r2) (∃p ∈ Aπ)

(
(p#r1 & p#r2) ∨

(p#r1 & p#r2)
)

(i.e., the table has no identical columns);
Then there exists a regular language for which the corre-
sponding binary relation # coincides with the given one.�

Thus, we can assume that for the regular language L
chosen on the basis of the last statement, and for the standard
notation of Section II associated with any regular language,
the following holds: Qπ = Aπ and Qρ = Aρ. Besides,
Proposition 1 simply entails following Proposition 2.

Proposition 2: In the terms of Proposition 1, the following
limitations hold:
• m ≤ 2n−1;
• n ≤ 2m−1.�
Next we consider an alphabet whose number of letters

equals to |Aπ|·|Aρ| = mn. (We note at once that the number
of states of the complete automaton considered below is
equal to |Aπ| = m. Therefore, in practical problems, for
example, in the above-mentioned problems of minimizing
nondeterministic finite automata, we can choose whether we
consider a regular language corresponding to a given table
of a binary relation # or a language corresponding to the
transposed version of this table. 5. In practical problems, we

5 In [3], the automaton for this language was denoted by K#sπsρ (or,
simply, K#), unlike considered here “more important” automaton K#sπsρ .
In this paper, we shall not use K#.

usually want a smaller number of vertices of the automaton
in question, i.e., if necessary, we can assume that m ≤ n.)
Thus, let the considered alphabet be the following:

Σ# =
{
a

A
X

∣∣∣A ∈ Qπ, X ∈ Qρ }.
We choose an arbitrary string (let sπ) and an arbitrary

column (let sρ) for the given table of the binary relation
#. The meaning of this choice is the input states of two
canonical automata, they are L̃ and L̃R in our previous
notation. In advance, we note that the arbitrarily chosen
starting state of L̃R uniquely determines the nonempty set
of final states L̃, and vice versa.

Definition 1: For the given binary relation # ⊆ Qπ ×Qρ
and the given states sπ ∈ Qπ and sρ ∈ Qρ, let us consider
automaton

K#sπsρ = (Qπ,Σ#, δ
#, {sπ}, Fπ)

(or, briefly, K#, if sπ are sρ are mentioned), where:
• Fπ = { fπ ∈ Qπ | fπ#sρ }; 6

• transition function δ# is defined in the following way:

δ#(A,a
B
X

) =

{
{B}, if A#X;

∅, otherwise.

(we allow here the possibility A = B).�
For this automaton, we give the following statement, which

can be considered as a simplified formulation of [3, Prop. 14].
Proposition 3: Let binary relation #̃ ⊆ Aπ×Aρ be given.

For it, let us consider automaton K#; we will use the con-
sidered in Section II designations and auxiliary objects for
this automaton. For language of this automaton L(K#), let
us considered corresponding binary relation # ⊆ Qπ ×Qρ.
Then the built for its language L(K#) binary relation #
coincides with the given relation #̃ (up to re-designation of
elements of sets Aπ and Aρ for elements of sets Qπ and
Qρ).�

Note that in fact in this section we have described automata
that are not common for one given regular language (al-
though the table of the binary relation # can be constructed
from a given regular language, and this is usually done),
but for an entire class of languages; the common objects
for all these languages are the binary relation #, and also
the input and output states of the corresponding canonical
automata (since, as follows from the foregoing, at the input
state of automaton L̃R, the outputs of the automaton L̃
are uniquely determined). Below in Section VI, it will be
shown how to obtain any automaton having a given table
of binary relation # (from the complete automaton, using
special transformations and fixed input and output states).

V. THE DETAILED EXAMPLE
OF THE COMPLETE AUTOMATON

As we noted before, in [3] we considered the trivial
example of the complete automaton only (and the title
“complete” was not used), i.e., for m = n = 2 and |#| = 3.
In this section, we will consider a much more informative
example, continuing to perform the constructions for the
language and the corresponding automata already considered

6 The choice of such a nonempty set is possible due to the above
limitations. Also note that by choosing different sπ ∈ Qπ and sρ ∈ Qρ, we
obtain a set of languages, each of which corresponds to the given relation #.

12

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 5, no. 10, 2017

in Section III above (i.e., for m = n = 4 and |#| = 11).
In fact, “the input” (for the construction of this section) are
only binary relation # for the given language, i.e., Tab. 1 for
our example.

According to the definitions given above, the correspond-
ing alphabet Σ# is the following:

Σ# = {a
A
X

, a
B
X

, a
C
X

, a
D
X

, a
A
Y

, a
B
Y

, a
C
Y

, a
D
Y

,

a
A
Z

, a
B
Z

, a
C
Z

, a
D
Z

, a
A
U

, a
B
U

, a
C
U

, a
D
U

}
(it contains 16 letters, because there exist 4 states of automa-
ton L̃ and 4 states of automaton L̃R, 4 · 4 = 16). Below, we
shall write for simplicity

A
X instead of a

A
X

, etc.

Let sπ = A, sρ = X; then Fπ = {B,C,D}. 7 And,
according to the above definition, we obtain for the language
L# the following canonical automaton K# (Tab. 4 and 4′):

Tab. 4
K# A

X
B
X

C
X

D
X

A
Y

B
Y

C
Y

D
Y

→ A – – – – A B C D
← B A B C D – – – –
← C A B C D A B C D
← D A B C D A B C D

Tab. 4′

K# A
Z

B
Z

C
Z

D
Z

A
U

B
U

C
U

D
U

→ A A B C D – – – –
← B A B C D – – – –
← C A B C D A B C D
← D A B C D – – – –

For the following, we consider the construction of the
binary relation # for the language defined by the last
automaton; we will show by an example that this relation
coincides with the given (up to re-designation of the elements
of the set). The process of construction is similar to the
one considered in [2]. For this thing, let us firstly consider
the mirror automaton (K#)R; this automaton 8 is given on
following Tab. 5–5′′′:

Tab. 5
(K#)R A

X
B
X

C
X

D
X

← A B,C,D – – –
→ B – B,C,D – –
→ C – – B,C,D –
→ D – – – B,C,D

(like similar situations before, we omit the signs of sets, i.e.,
we write, for instance, A,B,C,D instead of {A,B,C,D }).

7 We have already noted that, according to the definitions introduced,
Fπ can be determined on the basis of an arbitrarily chosen sρ; here, we
have chosen sρ so that the automaton constructed by us corresponds to the
original one.

8 According to the terminology and notation of [3], the canonical
automaton for its language is an automaton L# (K#), but we do not use

the last notation in this paper. We only note that the automaton ˜(K#)R

constructed below has all the properties of the automaton K#.

Tab. 5′

(K#)R A
Y

B
Y

C
Y

D
Y

← A A,C,D – – –
→ B – A,C,D – –
→ C – – A,C,D –
→ D – – – A,C,D

Tab. 5′′

(K#)R A
Z

B
Z

C
Z

D
Z

← A A,B,C,D – – –
→ B – A,B,C,D – –
→ C – – A,B,C,D –
→ D – – – A,B,C,D

Tab. 5′′′

(K#)R A
U

B
U

C
U

D
U

← A C – – –
→ B – C – –
→ C – – C –
→ D – – – C

The process of determinization of the last automaton is
described by the following table (Table 6–6′′′; we write so
called “aggregate states” in the order of their appearance in
the build process):

Tab. 6
(K#)R A

X
B
X

C
X

D
X

→ B,C,D – B,C,D B,C,D B,C,D

← A,C,D B,C,D – B,C,D B,C,D

← A,B,C,D B,C,D B,C,D B,C,D B,C,D

C – – B,C,D –

Tab. 6′

(K#)R A
Y

B
Y

C
Y

D
Y

→ B,C,D – A,C,D A,C,D A,C,D

← A,C,D A,C,D – A,C,D A,C,D

← A,B,C,D A,C,D A,C,D A,C,D A,C,D

C – – A,C,D –

Tab. 6′′

(K#)R A
Z

B
Z

C
Z

D
Z

→ B,C,D – A,B,C,D A,B,C,D A,B,C,D

← A,C,D A,B,C,D – A,B,C,D A,B,C,D

← A,B,C,D A,B,C,D A,B,C,D A,B,C,D A,B,C,D

C – – A,B,C,D –

Tab. 6′′′

(K#)R A
U

B
U

C
U

D
U

→ B,C,D – C C C

← A,C,D C – C C

← A,B,C,D C C C C

C – – C –

13

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 5, no. 10, 2017

And replacing:
• {B,C,D} for X (it corresponds to the following ele-

ments of binary relation #: B#X , C#X and D#X);
• {A,C,D} for Y (corresponds to elements A#Y , C#Y

and D#Y);
• {A,B,C,D} for Z (corresponds to elements A#Z,
B#Z, C#Z and D#Z);

• {C} for U (corresponds to element C#U),
we firstly form binary relation #, corresponding to consid-
ered language L(K#), and secondly, obtain the following
automaton (Tab. 7, 7′); we should designate it, according to
our notation system, as ˜(K#)R:

Tab. 7
˜(K#)R A

X
B
X

C
X

D
X

A
Y

B
Y

C
Y

D
Y

→ X – X X X – Y Y Y

← Y X – X X Y – Y Y

← Z X X X X Y Y Y Y

U – – X – – – Y –

Tab. 7′

˜(K#)R A
Z

B
Z

C
Z

D
Z

A
U

B
U

C
U

D
U

→ X – Z Z Z – U U U

← Y Z – Z Z U – U U

← Z Z Z Z Z U U U U

U – – Z – – – U –

Obviously, the formed binary relation # coincides with the
originally defined one.

VI. AN EXAMPLE OF THE USE
OF COMPLETE AUTOMATON

As we already remarked in Introduction, one of the main
results of this paper is the possibility of constructing a any
finite automaton from the corresponding pre-defined binary
relation # by applying special operations to the automaton
K#.

We note that the process of constructing an automaton
with a given binary relation, although it has general construc-
tions with the process of constructing any automaton by a
given basic automaton [12], is an entirely different problem:
in our case we are dealing with nonequivalent (generally
speaking) transformations of nondeterministic finite automata
(for example, we change the alphabet in the process of
construction), while in [12], as it follows from the title of
that article, all the transformations were equivalent.

Such nonequivalent transformations of nondeterministic
automata, which we have not considered in previous pub-
lications, are the following:
• “duplication” letters of the language of the automaton;
• forming the set of so-called “selected” edges (performed

on the base of the basic automaton);
• deleting the letter of the language (with the removal of

all arcs marked in the automaton);
• a special version of the combination of letters, taking

into account the available “selecting”;
• renaming letters of a language in the automaton.
Next, we will use the words “selected edges”, “selecting”

as the terms and write them without quotes. For a detailed

description of these actions, see below: an example will be
considered in this section (which is a continuation of the
examples discussed above), and a formal description of the
actions to be performed will be given in the next section. In
the example below, we show how to obtain the automaton L̃
(Tab. 4) using such several steps starting by automaton K#

(Fig. 3). From the example under consideration, it is clear
that similar actions are possible for any language (and the
corresponding canonical automaton) that has the same table
of the binary relation #.

Let us note in advance the following fact: we can assume
that all the subsequent ones are produced by means of
a nondeterministic search algorithm, and the sequence of
actions can be considered an “oracle” (see [13] etc.). Thus,
in the development of specific algorithms, it is convenient to
implement the actions described below, for example, using
the branch and bound method, and also, perhaps, to apply
parallel programming technologies, which we described, for
example, in [14] and some recent publications in Russian.

So, let us continue our consideration of the examples that
have been started before. Let us repear Fig. 3, where we add
the following things:
• firstly, we write down all possible states of the automa-

ton L̃R corresponding to the states of the automaton L̃
(i.e., for some state A ∈ Qπ we write all X ∈ Qρ, such
that A#X), we write them below, under the labels of
the corresponding vertices of the automaton L̃;

• secondly, we somehow number the edges (and write
numbers from 1 to 7 next to the arcs in brackets).

In doing so, we get the following Fig. 6.
Now, let us consistently consider all the 7 edges of

automaton L̃. For edge (1), i.e.,

A
a−→
δπ

B ,

we obtain corresponding edges for the basis automaton
(Tab. 2)

A
Y

a−→̂
δ

B
Z and A

Y

a−→̂
δ

B
X .

Fig. 6

By definition of automaton K#, both these edges of the basic
automaton correspond to the edge

A
B
Y−→
δ#

B

(we recall that by writing B
Y , or, which is the same thing,

a
B
Y

, we have designated one of the letters of the alphabet

over which the automaton is defined K#).

14

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 5, no. 10, 2017

Let us do the same with all the remaining 6 edges of the
automaton L̃, and write the results in the form of such an
addition (Tab. 8, 8′) to Table 4 considered before:

Tab. 8
A
X

B
X

C
X

D
X

A
Y

B
Y

C
Y

D
Y

→ A – – – – A B C D
← B A B C D – – – –
← C A B C D A B C D
← D A B C D A B C D

(1)
(3)

(2) (4)
(6) (7)

Tab. 8′
A
Z

B
Z

C
Z

D
Z

A
U

B
U

C
U

D
U

→ A A B C D – – – –
← B A B C D – – – –
← C A B C D A B C D
← D A B C D – – – –

(6)
(7)

(5) (2)

The new elements (the addition) of the last table are:
• markings of columns in the new last line, showing

which edges of automaton K# correspond to this letter;
• marking (with a gray background) the cells of the table

(edges of the automaton K#), showing which edges of
the automaton K# correspond to this edge.

We note the following two things.
• The correspondence between the edges of the given

canonical automaton (or of the given basis automaton)
and the edges of automaton K# is not single-valued,
as seen in the last table.

• When using the basic automaton, we did not pay atten-
tion to the values of the function ϕout for the output
states. (Because the edges we need are determined
without using them.)

Next, let us remove all the letters from the alphabet under
consideration, for which the cells (i.e., edges) marked with
a gray background, i.e., those corresponding to the edges
of the given canonical (or basic) automaton do not exist in
the corresponding columns of the last automaton (Tab. 8). In
addition, every remaining letter duplicate in as many as it
corresponds to the arcs. We obtain the automaton given on
the following Table 9:

Tab. 9
B
Y

B
Y

C
Y

C
Y

C
Y

C
Y

C
Z

C
Z

D
Z

C
U

→A B B C C C C – – – C
←B – – – – – – C C D –
←C B B C C C C C C D C
←D B B C C C C C C D –

(1) (3) (2) (4) (6) (7) (6) (7) (5) (2)

(The columns are written in the same order as in the previous
table 8. And, of course, each letter in the new alphabet, with
duplicated letters, corresponds now to only one edge marked
with a gray background. Among other things, we note in the
obtained automaton the absence of transitions to the input
state A, which was one of the signs of the given automaton

and it was not fulfilled for the corresponding K# and further
automata constructed on its base.)

Next, we combine letters that are identically marked in the
last line. It is necessary to fulfill this additional condition:
in the same row, the merged columns cannot have different
selected transitions (i.e., there is impossible that both cells
of the same row of the merged columns are selected, and
different transitions are defined); we note that in our example
this situation does not arise 9. After combining the letters,
we do not need their previous notation, so we do not use
the letters B

Y . . . C
U in the new table, but denote 7 letters in

the same way as we denoted the edges of the automaton on
Fig. 6: (1) . . . (7).

So, pointing “new letters” (1) . . . (7), as usual, in the header
cell of each column and “sorting them in ascending order”,
we get the following automaton (Tab. 10):

Tab. 10
(1) (2) (3) (4) (5) (6) (7)

→ A B C B C – C –
← B – – – – D C C
← C B C B C D C C
← D B C B C D C C

And, as is easy to be convinced, considering in it only the
selected arcs and denoting (in a natural way):
• letters (1), (2) and (3) by a;
• letters (4), (5), (6) and (7) by b,

we obtain the desired automaton.
Note that we can, applying the same nondeterministic

algorithm, get an entire class of automata (languages), for
example, using one of the following options:
• either selecting some other edges of the given automaton
K#;

• or leaving in the last automaton (Tab. 10 in our example)
some other edges (not only selected ones).

All these automata (all these languages) can be obtained as
a result of the transformations described here; all of them
are characterized by the same (the given) table of binary
relation #.

VII. CONSTRUCTING ARBITRARY FINITE AUTOMATON
ON THE BASE OF THE COMPLETE AUTOMATON

This section formally describes the nondeterministic al-
gorithm, which in the previous section was described infor-
mally.

Definition 2: Let regular language L defines binary rela-
tion #. Then we shall say, that edge

A
a−→
δπ

B (2)

of automaton L̃ corresponds to edge

A
B
X−→
δ#

B, (3)

of automaton K#, if for some Y ∈ Qρ, the following
condition holds:

A
X

a−→̂
δ

B
Y . (4)

9 We assume in the next publication to consider, among other things, a
similar example.

15

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 5, no. 10, 2017

Three edges (2), (3) and (4) (or some pair of them) will be
called corresponding.�

Of course, according to this definition, a certain edge
of canonical automaton L̃ corresponds to an only edge of
automaton K#; but the converse, in general, is not true. The
same fact is true for the basic automaton (instead of the
canonical one). That is, in both cases, the correspondence
can be considered as a morphism acting from the set of
transitions of the canonical automaton (transitions of the
basic automaton) to the set of transitions of a complete
automaton. Examples, when some (including 0) edges of
canonical automaton correspond an only edge, were consid-
ered in the last section; in the tables, we marked them in a
gray background.

Definition 3: Let edges of automaton L̃ are numbered
from 1 to n; we shall denote them by (1) . . . (n). Let edge
(i), written as (2), corresponds to edge (3). Then for the letter
(i), we shall call

A
(i)−→
δ(−)

B

by modified (i)-edge. (The constructed transition function
will be denoted by δ(−).)

In this case, we consider modified edges for the same
states of the canonical automaton (set Qπ) over alphabet

Σ(−) = { (1), (2), . . . , (n) } . �

Thus, we obtain a one-to-one correspondence between the
edges of the given canonical automaton and the modified
edges constructed by us; all the necessary examples were
also considered in the last section. Therefore, considering a
given regular language L and the corresponding relation #,
starting with the automaton K#, we delete edges, each of
which does not correspond to some edge of automaton L̃,
after which we transform each of the remaining letters into
several new ones (each of which corresponds to the edge
of canonical automaton), and, in the end, rename the letters,
perhaps, by calling several letters by the same new letter.
Let us formulate the described process in the form of the
following proposition.

Proposition 4: For a given regular language L and the
corresponding binary relation #, there exists a sequence of
transformations consisting of:

1) building “starting” automaton K#;
2) deleting some its edges;
3) renaming some edges (i.e., changing their marking

letters) – perhaps, marking some edges by different
new letters;

4) renaming marks of some edges by possible marking
some existing different edges by one new letter,

resulting automaton L̃.�
The correctness of the statement follows from the above

material.

VIII. CONCLUSION

So, in the present paper we described languages that can be
considered as “the most typical representatives” of subclasses
of the class of regular languages – such subclasses, that each
element of them is characterized by the same table of the
binary relation #. With the help of several nonequivalent
transformations of canonical automata for the “typical” lan-
guages we have identified, we obtain a canonical automaton

for an arbitrary regular language corresponding to a given
table of the binary relation #.

As already noted above, a complete automaton does not
define the regular language under consideration; however, it
defines a language that possesses many important properties
of the considered one. Similarly to the above cited article
[12], where we “collected” the edges of an arbitrary automa-
ton (for a predefined regular language) from the edges of its
basic automaton – in this paper, we roughly “collect” edges
of an arbitrary automaton from the edges of its complete
automaton. (In the interpretation of the algorithm above, we
actually removed the edges from the complete automaton,
i.e., we performed the “analytical”, not the “synthetic” al-
gorithm; however, of course, this difference is in this case
unprincipled.)

The material of this article is expected to continue in
the following two ways. First, we continue to consider the
connection of complete automata with the problems of vertex
minimization of nondeterministic finite automata, see [8],
[14], [15] and others. And this direction includes both the
theoretical part (description of new variants of minimiza-
tion algorithms, proof of their correctness, etc.), and the
practical part (description and implementation of heuristics
for minimizing automata with a large number of states).
Some algorithmic questions related to the implementation
of the corresponding heuristic algorithms have already been
considered in [11]; but, of course, this work requires the
continuation, in particular, of new variants of parallel imple-
mentation of the corresponding algorithms, which could be
the development of algorithms considered in [14], [15]. An
indirect argument that the implementation of these algorithms
will yield very good results is the following fact, briefly
mentioned above: in 1996, the program for finding the
minimum language by some criteria, implemented on the
basis of such an algorithm, on computer technology available
at that time received the necessary decision.

The problem of edge-minimization of nondeterministic
finite automata adjoins the problems described here; and the
description of algorithms for these problems that are more ef-
fective than the algorithms now available should become the
development of both the material from [2] and the technology
of the nonequivalent transformation of the automaton K#

described in this paper. In the author’s opinion, this problem
is even more important for practice than the much more
studied problem of state-minimization: in practical problems,
a nondeterministic automaton in the memory of computer is
usually represented as a set of transition edges.

And the second direction of the continuation of the work
on the topic is completely different. We already noted in
Introduction that for every binary relation # satisfying the
necessary limitations, there exists a subclass of the class
of regular languages, each of which has such a relation
#. The binary relation on the set of all regular languages
that is satisfied if and only if the two binary relations have
the same binary relation #, was named in Introduction by
binary relation R. In this case, we can consider subclasses
of the self-binary relation R (depending, for example, on
the operations applied to the automaton K# described in
Sections VI and VII to get the desired regular language) –
and we will show in one of the following publications that
the subclasses of binary relations defined by us form a lattice.

16

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 5, no. 10, 2017

REFERENCES

[1] Melnikov B., Melnikova A., Edge-minimization of non-deterministic fi-
nite automata. Korean Journal of Computational and Applied Mathe-
matics (Journal of Applied Mathematics and Computing). 2001, vol. 8,
no. 3, pp. 469–479.

[2] Melnikov B., Once more on the edge-minimization of nondeterministic
finite automata and the connected problems. Fundamenta Informaticae.
2010, vol. 104, no. 3. pp. 267–283.

[3] Melnikov B., Melnikova A., Some more on the basis finite automaton.
Acta Univ. Sapientiae, Informatica. 2013, vol. 5, no. 2, pp. 227–244.

[4] Lombardy S., Sakarovitch J., The Universal Automaton. in: Logic and
Automata, Texts in Logic and Games Amsterdam Univ. Press. 2008,
vol. 2, pp. 457–504.

[5] Melnikov B., Dolgov V., Some more algorithms for Conway’s universal
automaton. Acta Univ. Sapientiae, Informatica. 2014, vol. 6, no. 1,
pp. 5–20.

[6] Melnikov B., Vakhitova A., Some more on the finite automata. Korean
Journal of Computational and Applied Mathematics (Journal of Applied
Mathematics and Computing). 1998, vol. 5, no. 3, pp. 495–505.

[7] Melnikov B., Sciarini-Guryanova N., Possible edges of a finite automa-
ton defining a given regular language. Korean Journal of Computational
and Applied Mathematics (Journal of Applied Mathematics and Com-
puting). 2002, vol. 9, no. 2., pp. 475–485.

[8] Polák L., Minimalizations of NFA using the universal automaton. Inter-
national Journal of Foundation of Compututer Sciences. 2005, vol. 16,
no. 5, pp. 999–1010.

[9] Melnikov B., Once more on the combining states of nondeterministic
finite automaton. Proceedings of XI International Scientific Conference
on the Problems of Theoretical Cybernetics. M., Russian State Univer-
sity for the Humanities Ed. 1996. P. 139–141. (in Russian)

[10] Kameda T., Weiner P., On the state minimization of nondeterministic
finite automata. IEEE Trans. on Comp. 1970, vol. C-19, no. 7, pp. 617–
627.

[11] Krivolapova A., Melnikova E., Sofonova N., Some auxiliary algorithms
for construction of Waterloo-like automata. Vestnik of Voronezh State
University. Series: System analysis and information technologies. 2016,
no. 4, pp. 20–28. (in Russian)

[12] Melnikov B., Sayfullina M., On some algorithms of equivalent trans-
formations of nondeterministic finite automata. Izvestiya of universities.
Mathematics. 2009, no. 4, pp. 67–72. (in Russian) (English transla-
tion: Mel’nikov B., Saifullina M., Some algorithms for equivalent trans-
formations of nondeterministic finite automata. Russian Mathematics
(Izv. VUZ). 2009, no. 4, pp. 54–56.)

[13] Hromkovič J., Theoretical Computer Science. An Introduction to Au-
tomata, Computability, Complexity, Algorithmics, Randomization, Com-
munication, and Cryptography. Springer, 2003. 321 p.

[14] Melnikov B., Tsyganov A., The state minimizaton problem for nonde-
terministic finite automata: The parallel implementation of the truncated
branch and bound method. Proceedings of the International Symposium
on Parallel Architectures, Algorithms and Programming, PAAP-2012.
Taipei, Taiwan. 2012, pp. 194–201.

[15] Melnikov B., Radionov A., Moseev A., Melnikova E., Some specific
heuristics for situation clustering problems. Proceedings of the 1st
International Conference on Software and Data Technologies, ICSOFT-
2006. Setubal, Portugal. 2006, pp. 272–279.

17

	Introduction
	Preliminaries
	The detailed consideration of an example of constructing auxiliary objects
	The formal definitionof the complete automaton
	The detailed exampleof the complete automaton
	An example of the useof complete automaton
	Constructing arbitrary finite automatonon the base of the complete automaton
	Conclusion
	References

