


Abstract — This paper reviews three major application

configuration frameworks for Java-based applications:
java.util.Properties, Apache Commons Configuration and
Preferences API. Basic functionality of each framework is
illustrated with code examples. Pros and cons of each
framework are described in moderate detail. Suggestions are
made about typical use cases for each framework.

Keywords — application configuration management,
application settings management, framework, Java.

I. INTRODUCTION

Most software applications being developed today are
designed to run in several different environments;
environments can differ both by the stage in the project’s
lifecycle (i.e., developer’s workstation, CI server,
testing/QA deployment, staging, production) and by the
actual production environment (from different operating
systems to different user requirements). Application
Configuration Management (also known as Application
Settings Management) assumes that application’s behavior
can be influenced by a number of configuration attributes,
which, when referenced by the application code, allow it to
match specifics of its environment.

Application Configuration Management can be roughly

divided into four primary functional areas:

• configuration attributes storage and retrieval (both at

runtime and between application executions);
• reference of configuration attributes from inside the

application;
• attribute modification by end-users (either from inside

the application itself or via a standalone/dedicated
application);

• report on current configuration, including defined
attributes, their values, etc.

Traditionally, the first two areas – which are pre-

requisites for the last two – generated the most interest from
developers, resulting in emergence of several general-
purpose configuration frameworks. Lacking an accepted
ACM standard, those frameworks differ significantly in
almost all conceivable aspects – from development platform
to implementation complexity to robustness to available

Manuscript received June 13, 2013.
Victor S. Denisov is with Lomonosov Moscow State University,

Department of Computational Mathematics and Cybernetics, Moscow,
Russia (e-mail: vdenisov@plukh.org)

attribute schemes to supported storage facilities. However,
they all share a common design goal – to make application
configuration management easier for both developers and
end-users.

II. WHAT’S INCLUDED IN THE OVERVIEW (AND WHAT’S

NOT).

This paper provides overview of the three most
commonly used frameworks for managing configuration
information for Java-based applications: java.util.Properties
[1], Apache Commons Configuration [2] and Preferences
API [3][4]. Those are, by far, the most widely used
configuration frameworks in the Java world – or, at least, in
the open-source part of it, judging by the simple count of
top Apache, GitHub and SourceForge projects using each
particular framework.

Of course, there are more configuration frameworks for

Java applications than can be listed in a limited space of this
paper. Two of the more well-known frameworks are jFig [5]
and jConfig [6] (which, sadly, seems to be abandoned at the
moment).

Finally, it is worth mentioning that there are a number of

wrappers around the mentioned frameworks which provide
various additional benefits for the developer, such as type
safety, annotations-driven configuration definition, etc (see,
for example, [7] and [8]). While not on a level of a fully-
matured framework (both in terms of functionality,
complexity and adoption ratio), they do provide some
attractive (even if minor) features, making their use
warranted in certain specific cases.

III. THE FATHER OF THEM ALL - JAVA.UTIL.PROPERTIES

Properties class was the first configuration “framework”
for Java, being present in Java API from the very first 1.0
release back in 1996. It established a number of important
conventions for storing and retrieving configuration
information:

• configuration attributes were implemented as a flat

collection of name-value pairs (collectively called
properties); only strings could be used for both names and
values;

• attributes could be loaded from and saved to any Java
InputStream/OutputStream implementation – most often,
FileInputStream/FileOutputStream for storing properties in
a file on a local file system;

• properties file format (with a default .properties

Overview of Java application configuration
frameworks

Victor S. Denisov

extension) was simple and well documented, which made
possible alternative implementations and implementations in
other programming languages;

• a concept of a default value for a property was
introduced – a value returned if this property wasn’t loaded
from properties file or otherwise explicitly defined by the
application;

• a pseudo-hierarchical dot-separated property naming
convention was recommended (but not enforced) by
Properties documentation and accompanying examples.

The best thing about java.util.Properties is that it’s

trivially easy to use. Consider this example (for full source
code of examples in this article, see
https://github.com/vdenisov/config-overview-examples, this
is from Example1.java in "example-properties" project):

//Instantiate properties object and set some
property values
final Properties properties = new Properties();
properties.setProperty("property", "value");
properties.setProperty("another.property",
"value2");

//Store properties to file
try (FileOutputStream out = new
FileOutputStream("example1.properties")) {
 properties.store(out, "Example1 properties");
} catch (IOException e) {
 e.printStackTrace();
}

The above example assigns values to properties named

"property" and "another.property" (Properties class doesn’t
differentiate between attribute definition and value
assignment), then stores the configuration in a file named
"example1.properties":

#Example1 properties
#Thu Jun 13 21:19:29 MSK 2013
another.property=value2
property=value

This is a plain text file, which can be edited by any

common text editor, as well as passed around from system
to system by whatever method is deemed to be more
convenient (from plain old removable disks to remote cloud
storage). Note that the order in which properties will be
enumerated – including enumeration when saving – is not
guaranteed.

Reading properties is equally simple (see Example2.java):

//Instantiate properties object
final Properties properties = new Properties();

//Load properties from file
try (FileInputStream in = new
FileInputStream("example1.properties")) {
 properties.load(in);
} catch (IOException e) {
 e.printStackTrace();
}

Unfortunately, that’s about it when it comes to

java.util.Properties features. On the other hand, this class
suffers from a number of design and implementation
features, two of the most important ones being no validation

and type-safety whatsoever and confusing public interface.

Let's deal with the second issue first. Properties class

extends java.util.Hashtable and inherits all of its public
methods. However, new methods introduced by
java.util.Properties have some unexpected semantics when
used together with Hashtable's methods (see
Example3.java):

//Instantiate properties object and set some
property values
final Properties properties = new Properties();
properties.put("property", 1); //Will produce an
unexpected result later

//Output property values (somewhat unexpected
result)
System.out.println("property=" +
properties.getProperty("property"));

In the above example, result of properties.getProperty(…)

call will return null – which is somewhat counterintuitive.
First, we put integer value of 1 into the hashtable which
backs the properties map; next, we invoke getProperty(…)
method and expect it to either return a String value of "1"
(or whatever toString() method call for the appropriate
object instance would produce) or an exception (since
Integer is not assignment-compatible with String). Quite
unexpectedly, Properties class treats all hashtable entries
with non-String values as being absent from the collection
altogether, thus returning null for the above call.

Another problem is that Properties puts all responsibility

to validate and convert property values to and from their
String representations on application developer. Since it also
doesn't support any sort of self-documentation (neither run-
time, such as annotations, nor compile-time, such as
generics), this leads to extremely non-obvious errors, such
as assuming different valid value ranges for a certain
property, or assuming similar, but slightly different,
encoding schemes for binary property values in different
parts of the code (see Example4.java).

Finally, java.util.Properties has no built-in method for

propagating configuration changes inside the application –
again, responsibility to notify different application
components about changes in configuration lies with the
developer.

To sum it up, the pros and cons of java.util.Properties as

configuration framework are as follows:

Pros:
• takes literally one line of code to instantiate and use;
• provides simple key-value mapping;
• well-defined storage standard;
• easy to change stored configuration information with

external tools.

Cons:
• no type safety;
• not self-documenting;
• responsibility for validation and value conversion lies

with the application;
• no way to monitor configuration file for changes;
• no configuration change listeners.

All in all, java.util.Properties can only be recommended

for small (less that approximately 20 classes) projects.
Projects which start big, or which will probably grow over
time, should look to another way of handling their
configuration requirements.

IV. APACHE COMMONS CONFIGURATION

Apache Commons Configuration (CC for short) started
its life as a set of configuration classes for Apache JServ. It
then served a number of Apache Foundation projects, until
finally becoming part of the Apache Commons library
collection in 2003.

Perhaps the most important difference with

java.util.Properties is that CC uses a factory pattern to hide a
variety of different configuration implementations behind a
single Configuration interface, thus isolating configuration-
specific logic behind a common facade.

CC provides a number of classes implementing

Configuration interface, which support various persistent
storage formats and mediums (such as properties files, XML
documents, JNDI, JDBC), as well as extend basic
Configuration interface contract in several ways (such as
adding support for hierarchical information, or merging
configuration information from several other Configuration
implementations).

Despite all that additional functionality, CC is still

trivially easy to use. It takes just a couple lines of code to
instantiate a Configuration implementation, define a
property and persist the resulting set to the local filesystem
(see Example1.java in " example-commons-config" project):

final PropertiesConfiguration configuration = new
PropertiesConfiguration();
configuration.setProperty("property", "value");
configuration.setHeader(
 "Example1 properties configuration");
try {
 configuration.save("example1.properties");
} catch (ConfigurationException e) {
 e.printStackTrace();
}

Loading configuration information from a file is equally

easy. Other persistence methods may require a little more
setup, but, for the most part, they're just as straightforward
as file-based storage methods (see Example2.java):

final PropertiesConfiguration conf = new
PropertiesConfiguration();
try {
 conf.load("example1.properties");
} catch (ConfigurationException e) {
 e.printStackTrace();
}
System.out.println("property=" +
conf.getString("property"));

Another interesting feature of Commons Configuration is

its ability to maintain and control the layout of configuration
files. Each PropertiesConfiguration object is associated with
Layout, an instance of the PropertiesConfigurationLayout
class. This class is responsible for preserving, to the extent
possible, the original structure of the file, including property
ordering, comments, extra lines, etc. When configuration is
persisted back to the filesystem, Layout ensures that all
specific layout restrictions (such as a separator char between
property names and values) are enforced (see
Example3.java for an example of persisting configuration
with and without changes to the layout).

Commons Configuration has built-in support for working

with lists (or arrays) of objects as values of a single property
(see Example4.java):

final PropertiesConfiguration conf = new
PropertiesConfiguration();
conf.setProperty("array_property",
 "red, green, blue");
String[] strings =
conf.getStringArray("array_property");
System.out.println("Got " + strings.length +
" elements, first is " + strings[0] +
", second is " + strings[1] + " and third is " +
strings[2]);

As can be seen from the example above, CC

automatically splits string values around commas – which is
the default delimiter character for multi-valued properties.
Same thing happens when properties are read from file;
when saving, values of multi-valued properties are
concatenated using delimiter chars, forming a single
property entry.

Finally, CC supports configuration listeners, which

receive configuration change events whenever configuration
information maintained by the object they're attached to
changes (for example, when a new property is added or an
existing property value is updated). See Example5.java for
an example of how configuration listener can be setup and
how configuration change events can be processed by the
application.

Here are the pros and cons of Commons Configuration

framework:

Pros:
• easy to use;
• provides robust structured key-value mapping;
• excellent capabilities when working with file-based

configuration sources;
• allows storing and retrieving configuration information

to/from a variety of local and remote sources;
• limited type-safety for most common value types;
• notifications on configuration information changes;
• easy to change stored configuration information with

external tools.

Cons:
• additional dependencies make the framework

impractical for small projects;
• not self-documenting;

• very limited capabilities for value validation;

Basically, for all but the smallest Java projects there is no

reason to prefer java.util.Properties over Commons
Configuration – it provides significantly more features
while keeping the same ease of use that Properties are
known for.

V. PREFERENCES API

Preferences API (along with its main implementing class,
java.util.prefs.Preferences) first appeared in Java2 SE 1.4,
released in 2002. Its main goal was to provide platform-
independent API for storing and retrieving application
configuration to/from a platform-appropriate backing store
(like a registry service on Windows, XML files on *nix,
etc).

Preferences API is similar to both Properties and

Commons Configuration in that it allows the application to
store its configuration information as a set of key-value
pairs. Like CC, Preferences supports structured information,
with inner nodes identifying the application and/or specific
application classes to which specified information sets
belong.

Unlike other configuration frameworks, Preferences

makes clear distinction between "system" and "user"
backing stores. System store must be accessible to all users
of the system; user stores are unique for each distinct user of
the underlying OS. This allows to separate global
configuration elements (such as the path to and version of
the application) and user-specific elements (such as window
position and dimension, document history, font preferences,
etc).

Using Preferences API is relatively simple. Usually, the

application obtains Preferences object for its main class (or
otherwise identifies the parent node storing its configuration
information), then stores and retrieves key-value pairs for
this node and any subnodes it requires. In Example1.java in
"example-preferences" project a Preferences instance for the
user preferences of the main class (residing in the package
"org.plukh.examples.preferences") is obtained and a couple
of configuration properties are added to it:

Preferences prefs =
Preferences.userNodeForPackage(Example1.class);

prefs.put("property", "value");
prefs.putInt("int_property", 1);
prefs.putBoolean("bool_property", true);

On Windows machine, it results in several keys being

created and/or updated in the registry (see Fig. 1):

Fig. 1

When executed on a Unix machine, this same code would
result in a series of hidden directories created in the user's
home directory, the last of which would contain an XML
document with actual configuration properties.

Note that, unlike in previously described frameworks,

there are no explicit calls to persist configuration
information to the backing store. If you'll check
Example2.java, you'll notice that there are no explicit calls
to load the information before accessing it as well.
Preferences API implementation must manage persistence
for the application, loading and saving information to the
backing store as needed.

Unfortunately, specifics of the backing store

implementation on different platforms aren't standardized.
This poses two critical problems. First, it's difficult to access
configuration information managed by Preferences API
consistently across different platforms with external tools
(for example, to allow for centralized management of
configuration information) – different set of tools (probably
using different technologies) should be developed for all
supported platforms. Second, there is no guarantee that
different Preferences implementations (from different JVM
vendors, and even different versions provided by the single
vendor) will be interoperable – and so there is no guarantee
that configuration information will not be corrupted or lost
in a routine JVM upgrade, for example.

Preferences API allows to specify a custom Preferences

class implementation (or, rather, a factory for creating
Preferences instances via the PreferencesFactory class). This
is usually used to create alternative backing store
implementations (see [9] for an implementation which uses
plain .properties files to store configuration information);
another reason is to provide read-only stores (so that
applications can retrieve, but not modify, their
configuration). However, only a single PreferencesFactory
instance can be configured for a JVM instance, which limits
the applicability of this approach for virtual machines with
several independent applications running at once (such as
J2EE application servers – for an old, but still relevant,
discussion, see [10]).

Preferences API provides limited type safety by safely

converting string property values read from the backing
store to the most common Java types, such as boolean or int
– using default values (which are mandatory in all "get"-
type calls) if conversion fails. However, it doesn't enforce
specific value types for specific properties, so the code
below is perfectly valid, even if obviously error-prone (see
Example4.java):

prefs.putInt("property", 1);
prefs.put("property", "string");

Additionally, requirement to specify default values on

every call (rather than when application is first initialized, or
when the configuration is first persisted to the backing
store) leads to error-prone code, where different default

values can be used in different calls – which, depending on
context, can be both correct and incorrect. Consider
Example5.java. In inner class Right, different defaults are
used based on whether or not the app runs on Windows OS,
which is probably what the developer intended. In inner
class Wrong, there is a typo, and different defaults are
erroneously specified in two different calls – in larger
applications, successfully isolating such problems can
require significant effort.

Summing it up, pros of the Preferences API:
• built into JRE – no external dependencies;
• robust structured key-value mapping;
• backing store implementation is fully isolated from the

application;
• limited type-safety for most common value types;
• notifications on configuration information changes;
• thread-safe serialized access to configuration

information inside a single JVM; guarantee against backing
store corruption with multi-JVM access.

Cons:
• requirement to specify a default value in all "get" calls

makes for error-prone code if the same property is
referenced from multiple parts of the code;

• platform-specific, proprietary and not always
predictable backing store format makes it difficult to use
external tools to manage configuration information in a
platform-independent way;

• implementation-specific backing store - configuration
can be lost on JVM vendor/version change;

• can't use different configuration sources
simultaneously without lots of additional code;

• no isolation between information for different
applications, both inside the same VM and across VMs.

Preferences API is clearly targeted at desktop

applications running on a limited number of platforms, with
each application running in a single dedicated VM. It's easy
to use and has some extremely useful features, like
automatic persistence management. It also suffers from a
number of issues which make it significantly less suited for
server-side or embedded applications.

VI. CONCLUSION

There are three primary application configuration
frameworks in use now in the Java ecosystem:
java.util.Properties, Apache Commons Configuration and
the Preferences API. While java.util.Properties is severely
outdated (but is still widely used), both Commons
Configurations and Preferences API provide a far more
robust and feature-rich – but still easy to use – alternative.

Unfortunately, both Commons Configuration and

Preferences API still suffer from several common problems:
• not self-documenting – information about each

property's type, acceptable values, usage semantics (such as
being read-only), etc has to be documented manually (in
comments or in external documentation); the code which
references those properties is too generic;

• limited type-safety – while both frameworks provide
safe value conversions for common value types, such as
numbers or booleans, they don't enforce type-safety on
assignment;

• limited extensibility – no built-in mechanisms for
extending the framework with support for new data types,
data structures, etc;

• no support for complex data structures, such as
JavaBeans, as property values.

VII. FUTURE WORK

Shortcomings of existing Java ACM frameworks call for
a more up-to-date application configuration framework –
something which will be discussed in-depth in future
papers, starting with the discussion of requirements and
followed by an actual prototype configuration framework
implementation.

REFERENCES
[1] Class java.util.Properties [Online]. Available:

http://docs.oracle.com/javase/7/docs/api/java/util/Properties.html
[2] Commons Configuration [Online]. Available:

http://commons.apache.org/proper/commons-configuration/
[3] Preferences API Overview [Online]. Available:

http://docs.oracle.com/javase/7/docs/technotes/guides/preferences/ove
rview.html

[4] Class java.util.prefs.Preferences [Online]. Available:
http://docs.oracle.com/javase/7/docs/api/java/util/prefs/Preferences.ht
ml

[5] jFig – Java Configuration Solution [Online]. Available:
http://jfig.sourceforge.net/

[6] jConfig [Online]. Available: http://www.jconfig.org/
[7] OWNER - Java™ properties files made super simple! [Online].

Available: http://lviggiano.github.io/owner/

[8] Hughes, M. (2007, Jul 24). Easing configuration. IBM
developerWorks Technical Library [Online]. Available:
http://www.ibm.com/developerworks/java/library/j-
configint/index.html

[9] Croft, D. (2009, Jun 18). Java Preferences using a file as the backing
store [Online]. Available:
http://www.davidc.net/programming/java/java-preferences-using-file-
backing-store

[10] Halloway, S. D. (2002, Aug 30). Java Properties Purgatory Part 2
[Online]. Available:
http://www.informit.com/articles/article.aspx?p=29011

