
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 4, no. 5, 2016

 48

Abstract - Computer technologies like computer languages

and hardware have been involving for past few decades. We

have a lot of computer programs which need to maintain and

rewrite when releasing new equipment or technology. It is too

expensive and unreliable to rewrite the whole code from

scratch. Also the spread of portable devices, which usually

have multi-core processors, increase the demands on the

quality of the developed programs, their effective work in

relation to the consumption of resources. All the above-

mentioned reasons complicate the programs and require a

large amount of effort from programmers. Moreover, a widely

spread of the Internet and web programming with scripting

computer languages like JavaScript or Python raised many

new problems associated with the quality and reliability of

software packages. Source-to-source compilers, also known as

transcompiler or transpiler can help to resolve these problems.

In this paper, we will describe principles of working for such

compilers and consider some of them.

Keywords – source-to-source compiler, source-to-source

compilation, optimization, program translation, transcompiler,

transpiler.

I. INTRODUCTION

The first source-to-source compiler was developed in 1981. It

translated .ASM source code for the Intel 8080 processor into .A86

source code for the Intel 8086. After the advent of multi-core

computing devices was developed automatic parallelizing

compilers, e.g. PIPS [1], PLUTO [2], Polaris [3], ROSE [4]. Then

began the era of the Internet and scripting computer languages such

as Python and JavaScript. They are becoming very popular. But

these languages were developed for nonprofessional programmers

so computer programs developed in these languages usually has a

lot of errors, un-optimized and redundancy code. These causes

have made optimizing source-to-source compiler popular also in

nowadays, e.g. Google Closure [5], UglifyJS [6], Esmangle [7].

Also, transpilers are used not only for the translation of imperative

programming languages, but declarative such as Sass, Less,

programs are written in that are translated in CSS, since browsers

are able to handle CSS only.

Thus, the main problems that source-to-source compilers solve are:

- translating source code which is written in one language to other

approximately the same level of abstraction;

- translating source code to another version of a language;

- automatic parallelization for a sequential source code;

- source code optimization.

In this article, we will focus in more detail on the each of the above

tasks, as well as give examples of how compilers solve them, and

how these decisions are effective.

Manuscript received Apr 10, 2016.

Evgeniy Ilyushin is a researcher at Lomonosov Moscow State

University (e-mail: john.ilyushin@gmail.com).

Dmitry Namiot is a senior scientist at Lomonosov Moscow State

University (e-mail: dnamiot@gmail.com).

II. THE ARCHITECTURE AND REQUIREMENTS

As with the traditional compiler, an architecture of transpiler can

be divided into two parts – front-end and back-end. The front-end

translates the source language into an intermediate representation.

The back-end works with the internal representation to produce

code in the output language.

Fig. 1. The architecture of transpiler.

In general, transcompiler takes the source code of a programming

language as its input and outputs the source code into another

programming language approximately the same level of abstraction

or the same language it depends on purpose it. This is a difference

between a compiler and a source-to-source compiler because a

compiler translates source code to machine code.

Fig. 2. Principles of working.

Requirements for a typical transpiler are:

1. The resulting program should be close to correct.

2. A result of execution of the translating program has to be

exactly the same as a result of execution of source

program.

3. The process should have minimal user interaction and

fewer user efforts.

III. TRANSLATING FROM ONE LANGUAGE TO OTHER

Source-to-source translation of programs from one high-level

language to another has been shown to be an effective aid to

programming in many cases. By the use of this approach, it is

sometimes possible to produce software more cheaply and reliably.

Cases of using this type of transpiler are:

1. Translation of small programs.

On source-to-source compilers

Evgeniy Ilyushin, Dmitry Namiot

Source

code

Transpiler Source

code

Source

code

Compiler Machine

code

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 4, no. 5, 2016

 49

2. Translation of large programs. The automatic translation of large

programs usually is not possible. This is due to the fact that they

often contain many legacy codes from previous versions, which

in turn may contain errors, security vulnerabilities and are not

well understood. As an example of such a program, we can

mention an operating system. Programs of this class contain

millions of lines of code and any attempt to translate the entire

program at once will fail, so it should be divided into small areas

and translates in stages.

3. Translation of libraries which are planning to do widely spread.

4. Translation within the multi-language runtime. As an example of

such translation we can mention the .NET platform by Microsoft

[8]. The working scheme of it is presented in the figure below.

Fig. 3. compiling process of .NET

The source code is written in one of the languages supported by the

.NET platform could be converted by transcompiler into

intermediate code MSIL (Microsoft Intermediate Language), after

that the MSIL code could be translated into Native code.

IV. TRANSLATION TO ANOTHER VERSION

This type is used to raise or lower version of computer language

for a given source code program. This type of translation could be

used in the following cases:

1. Lowering version of the code. After the release of the new

standard of a computer language, we want to use new syntax,

right now without waiting for compilers support. In this case, we

translate our source code written by a new version of a language

to an older version. For instance, Babel [9] turns your ES6 code

into ES5 friendly code (listing 1).

ES6 ES5
class Test {

 getItems(){

 return [];

 }

 saveItem(item){

 }

}

var _prototypeProperties =

function (child, staticProps, instanceProps) {

if (staticProps)

 Object.defineProperties(child, staticProps);

if (instanceProps)

Object.defineProperties(child.prototype,

instanceProps); };

var _classCallCheck = function (instance,

Constructor) {

 if (!(instance instanceof Constructor)) {

 throw new TypeError(«Cannot call a class

as a function»); } };

var Test = (function () {

 function Test() {

 _classCallCheck(this, Test);

 }

 _prototypeProperties(Test, null, {

 getItems: {

 value: function getItems() {

 return [];

 },

 writable: true,

 configurable: true

 },

 saveItem: {

 value: function saveItem(item) {},

 writable: true,

 configurable: true

 }

 });

 return Test;

})();

Listing 1. Example of ES6 class that is transpiled to the ES5

equivalent

2. Raising version of the code. At that rate, similar to the above-

mentioned example, we got a new version of a language, but we

don't want to use a new syntax and continue to program using

the previous version or want to translate the legacy code to the

new version. For instance, 2to3 [10] reads Python 2.x source

code and applies a series of fixers to transform it into valid

Python 3.x code.

As an example of effective using of this type of compiler, we can

mention the conversion for more than 80 000 lines unit testing

code of four open-source Java applications to use the latest version

of the popular JUnit testing framework (is one of a family of unit

testing frameworks which is collectively known as xUnit that

originated with SUnit) [11].

V. AUTOMATIC PARALLELIZATION

Multicore processors are very commonly used. The industry trend

suggests that the number of cores is still going to rise in the coming

years. This multicore paradigm shift has forced the software

industry to change the way applications are written. To utilize the

available cores to their highest potential parallel programs are

needed. Similarly, legacy application codes need to be re-written or

parallelized so that the new multicore hardware is exploited fully.

Writing parallel programs manually is difficult, cost and time

consuming and hence there is a need for tools that can aid to

convert legacy sequential codes to parallel codes. Such tools are

auto-parallelizing transcompilers. The major challenges involved

in design and implementation of such a tool include finding alias

variables, dependencies between statements, side-effects of

function calls etc. Best of these tools exploit task parallelization,

loop parallelization and some of them can perform code

transformation.

Stages of Automatic parallelization are:

1. Detecting sections of code that can be executed concurrently.

The analyzer uses IR provided by the Frontend part of

transcompiler. The analyzer will first find out all the functions

that are totally independent of each other and mark them as

individual tasks. Then analyzer finds which tasks are having

dependencies and trying to dispose of its dependencies.

2. A scheduler lists tasks and their dependencies on each other in

terms of execution and start times. This stage will produce an

optimal schedule in terms of number of processors to be used or

the total time of execution of the application.

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 4, no. 5, 2016

 50

3. The stage of code generation will insert special construction

(instructions for OpenCL, OpenMP, CUDA or other) and can

make transformations in the code according to data of the

schedule.

Notice that not all transpilers of this type can detect sections of

code that can be executed concurrently. Some of them such

hiCUDA, SkePU or PGI Accelerator require a programmer to

place the constructions in the code by hand (listing 2) [13].

Source code:

int N = 512*512;

for(i = 1; i < N; i++)

B[i] = 3*A[i-1] + 4*A[i] + 3*A[i+1];

Source code with directives:

int N = 512*512;

#pragma acc region

{

#pragma acc for independent

for(i = 1; i < N; i++)

 B[i] = 3*A[i-1] + 4*A[i] + 3*A[i+1];

}

Listing 2: Example of using the PGI Accelerator

One of the important issues here is a way we can evaluate the

efficiency of these compilers. For example, we can use the

following criteria.

Criteria of performance [13]:

• Performance and scalability. The output for a parallel

program should give better performance in terms of

execution time compared to serial time.

• Memory and time complexity. The output program should be

more efficiency in terms of run time and memory usage.

• Parallelization overhead. Parallelization overhead shouldn't

kill benefit of using parallel code.

Conclusions about the efficiency of such compilers we can do

using results of research in the paper [13]. Authors of the paper

chose Par4All [14], CETUS and S2P transcompiler for testing. All

these systems are automatic parallelizing compilers. The authors

used NAS Parallel Benchmark for testing parallelization tools.

These benchmarks were designed to compare the performance of

highly parallel computers and are widely recognized as a standard

indicator of computer performance. Other than the above NAS

benchmark code, they have used a standard matrix multiplication

code for benchmarking. As a result, we can say that the

performance of parallel code will increase when all the threads are

mapped to physical cores. For task level parallelization, the task

should have optimal size and fewer dependencies. These tools

should try to skip the loops that have smaller execution time.

VI. SOURCE CODE OPTIMIZATION

Nowadays, it is one of the most popular types of transpilers. The

main goal of them is translating source code to compact, effective

and unmistakable code by the same language. Such popularity

transpilers of this type obtained thanks to the wide spread of the

Internet and web applications. The vast majority of electronic

devices such as PCs, laptops, mobile phones, smart watches etc.,

provide their users the ability to connect to the Internet and run

web applications. A special feature of web applications is that they

use in one way or another JavaScript programming language and

the user can start the application with the help of a large number of

different browsers, which in turn are supported by a particular

implementation the language. Each language implementation has

its limitations and its own set of optimizations. Some of the ways

language optimizations require a long execution time, which

adversely affects the user experience and may require considerable

expenditure battery power. These problems are typical for all

portable devices.

As an example of optimizing transpiler we chose one of the most

popular Google Closure by Google, as well as the programs that it

has optimized, have been used JavaScript benchmarks Sunspider

1.0.2 and Ubench. We used JavaScript engines V8 and

JavaScriptCore for performance analysis.

Table 1. Results of testing

Test’s name
decreasing

size(%)

decreasing

time v8(%)

decreasing

time JSC(%)

3d-cube.js 61 -3 -5

3d-morph.js 85 -45 -34

access-binary-trees.js 73 17 14

access-fannkuch.js 70 -32 -20

access-nbody.js 62 13 0

access-nsieve.js 72 -33 -43

bitops-3bit-bits-in-

byte.js 77 -20 0

bitops-bits-in-byte.js 70 -3 -6

bitops-bitwise-and.js 91 11 0

bitops-nsieve-bits.js 63 -33 -22

controlflow-recursive.js 55 19 -7

crypto-aes.js 55 3 -6

crypto-md5.js 59 10 6

crypto-sha1.js 75 -14 7

function-closure.js 71 27 40

function-correct-args.js 82 21 5

function-empty.js 61 -3 0

function-excess-args.js 78 18 5

function-missing-args.js 76 6 82

function-sum.js 75 3 6

loop-empty-resolve.js 42 10 -5

loop-empty.js 42 8 3

math-partial-sums.js 66 -33 -6

math-spectral-norm.js 46 21 7

string-fasta.js 24 -9 -13

string-unpack-code.js 2 -4 11

Average: 62 -2 1

As we can see in Table 1, the amount of code has dropped on

average by 60% and the performance has dropped in some cases.

From the results as shown in Table 1, we observe the following:

• These tools we can use in the case when we need to reduce a

size of the code. For instance, web application each time sends a

library to clients. If a size of our library is huge, it will slow

down web pages loading speed.

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 4, no. 5, 2016

 51

• They aren't effective as optimizing compilers in the case of

dynamic programming languages. This is because they can't

perform static optimization without knowledge of types. Thus,

we should compare the performance of un-optimized and

optimized versions of code [15].

Moreover, we checked each pass of Google Closure and calculate

their efficient, how many times they called (Table 2):

Table 2. The most efficient passes of Google Closure

Pass name

Number

of times

Average

reducing

code amount

Average

execution time

(milliseconds)

renameVars 21 737 1

peepholeOptimiz

ations 20 523 1

collapseVariable

Declarations 19 34 0

renameProperties 15 148 1

smartNamePass 6 56 14

collapseAnonym

ousFunctions 4 5 0

coalesceVariable

Names 3 134 15

flowSensitiveInli

neVariables 3 27 23

exploitAssign 3 18 1

renameVars - renames all the variables names into short names,

to reduce code size and also to obfuscate the code.

peepholeOptimizationstyAssignments – consist of:

• PeepholeCollectProper - a pass that looks for assignment to

properties of an object or array immediately following its

creation using the abbreviated syntax.

• PeepholeFoldConstant – a peephole optimization to fold

constants.

• PeepholeMinimizeConditions - a peephole optimization that

minimizes conditional expressions according to De Morgan's

laws.

• PeepholeRemoveDeadCode – a peephole optimization to

remove useless code such as IF's with false guard conditions,

comma operator left-hand sides with no side effects, etc.

• PeepholeReplaceKnownMethods - just to fold known

methods when they are called with constants.

• PeepholeSimplifyRegExp - simplifies regular expression

patterns and flags.

• PeepholeSubstituteAlternateSyntax - a peephole optimization

that minimizes code by simplifying conditional expressions,

replacing IFs with HOOKs, replacing object constructors with

literals, and simplifying returns.

collapseVariableDeclarations - tests for variable declaration

collapsing.

renameProperties – renames properties (including methods) of all

JavaScript objects. This includes prototypes, functions, object

literals, etc.

collapseAnonymousFunctions - collapses anonymous function

expressions into named function declarations.

coalesceVariableNames - Reuse variable names if possible.

flowSensitiveInlineVariables - inline variables when possible.

This pass attempts to inline a variable by placing the value at the

definition where the variable is used.

exploitAssign - tries to chain assignments together.

Below is an example of source-to-source optimization performed

on controlflow-recursive.js (Listing 2).

Unoptimized Optimized

function ack(m,n){

 if (m==0) { return n+1; }

 if (n==0) { return ack(m-1,1); }

 return ack(m-1, ack(m,n-1));

}

function c(a,b){

return 0==a?b+1:0==b?c(a-

1,1):c(a-1,c(a,b-1))

}

function fib(n) {

 if (n < 2){ return 1; }

 return fib(n-2) + fib(n-1);

}

function d(a){

return 2>a?1:d(a-2)+d(a-1)

}

function tak(x,y,z) {

 if (y >= x) return z;

 return tak(tak(x-1,y,z), tak(y-

1,z,x), tak(z-1,x,y));

}

function e(a,b,g){

return b>=a?g:e(e(a-1,b,g),e(b-

1,g,a),e(g-1,a,b))

}

var result = 0;

for (var i = 3; i <= 5; i++) {

 result += ack(3,i);

 result += fib(17.0+i);

 result +=

tak(3*i+3,2*i+2,i+1);

}

for(var f=0,h=3;5>=h;h++)

f+=c(3,h),f+=d(17+h),

f+=e(3*h+3,2*h+2,h+1);

var expected = 57775;

if (result != expected)

 throw "ERROR: bad result:

expected " + expected + " but got

" + result;

if(57775!=f)throw"ERROR: bad

result: expected 57775 but got "+f;

Listing 2: Example of optimization

VII. CONCLUSION

This technology could lead to significant increases in productivity

and reliability of software. The potential benefits include faster

coding and more reliable software, though testing, debugging, and

hand coding would still be necessary. In the case when we are

planning to use an auto-parallelizing transpiler, we should

remember about problems associated with detecting dependencies

between statements and be able to write code minimizing these

dependencies, understanding dependency between possibilities of

hardware and software. Furthermore, one should not forget that

optimizing compilers can sometimes reduce the performance of a

program and we should compare the performance of both

unoptimized and optimized version of the code.

REFERENCES

[1] PIPS http://pips4u.org/

[2] PLUTO http://pluto-compiler.sourceforge.net/

[3] POLARIS http://polaris.cs.uiuc.edu/polaris/polaris-old.html

[4] ROSE http://rosecompiler.org/

[5] Google Closure https://developers.google.com/closure/compiler/

[6] UglifyJS https://github.com/mishoo/UglifyJS

[7] Esmangle https://github.com/estools/esmangle

[8] Source-to-Source Translation and Software Engineering

http://dx.doi.org/10.4236/jsea.2013.64A005 Retrieved: Jun 2013.

[9] Babel https://babeljs.io/

[10] 2to3 https://docs.python.org/2/library/2to3.html

[11] W. Tansey and E. Tilevich, “Annotation Refactoring: Inferring

Upgrade Transformations for Legacy Applications,” Proceedings of

the 23rd ACM SIGPLAN Conference on Object-Oriented

Programming Systems Languages and Applications (OOPSLA ’08),

Vol. 43, No. 10, 2008, pp. 295-312.

[12] C. Nugteren and H. Corporaal «Introducing ‘Bones’: A Parallelizing

Source-to-Source Compiler Based on Algorithmic Skeletons»

[13] A. Athavale, P. Randive and A. Kambale «Automatic Parallelization

of Sequential Codes Using S2P Tool and Benchmarking of the

Generated Parallel Codes»

http://www.kpit.com/downloads/research-papers/automatic-

parallelization-sequential-codes.pdf

[14] Par4All https://github.com/Par4All/par4all

[15] I.O. Zolotareva, O.O. Knyga «Modern JavaScript project optimizers»

