
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 4, no. 1, 2016

 31

Multi-application multi-layer configuration in an

AWS environment
Victor S. Denisov

Abstract – When designing and implementing complex

multi-application systems for cloud environments,

developers often run into issues with managing run-

time configuration for each application in different

deployments (such as development, staging and

production), as well as configuration information

common between deployments and applications. This

paper proposes one approach to solving this problem

for Java applications running in Amazon Web Services

cloud platform.

Keywords — application configuration management,

application settings management, Java, cloud, options-

util, Amazon Web Services.

I. INTRODUCTION

Consider a typical data processing system running on

Amazon's cloud infrastructure. More likely than not, this

system involves at least the following chain of

applications:

• Set of ingress applications, which actively (via

polling) or passively (via pushing/streaming)

consume, filter and transform incoming data,

making it available to applications further down

the chain. This can take form of a servlet

container [1] cluster running behind an Elastic

Load Balancer [2] receiving batches of tweets via

DataSift Push API [3], or a set of GELF-

compatible [4] servers receiving event streams

from your other applications. Data captured by

ingress applications is put into some sort of

persistent or ephemeral storage, such as a

database or a distributed queue.

• Set of data processing applications, which

process data captured by ingress applications and

extract business value from it (like, for example,

measuring consumers' sentiment towards a brand

from a raw stream of tweets mentioning the

brand). The resulting information is stored in a

persistent storage for later use and analysis by

business applications.

• Set of business intelligence/business

analytics/decision support applications, which

help business users to act upon information

extracted from incoming data.

This typical application stack can be further supplemented

by various support applications, such as

 Victor S. Denisov is with the Lomonosov Moscow State University

(e-mail: vdenisov@plukh.org).

management/monitoring systems, centralized logging

systems, etc.

This leads to a problem of managing runtime

configuration information for all the applications

involved in a consistent, transparent and maintainable

manner. The problem is made significantly more complex

by several important considerations:

• often, applications have to run in different

deployments (such as development, staging and

production), with certain configuration settings

common to some deployments, but not others;

• in larger deployments, different application

versions (with different configuration

information sets) have to coexist for reasonably

long periods of time;

• configuration information should be, to the

extent possible, separate from application code,

for both security and practical issues (re-

deploying most applications takes significantly

longer than simply restarting them to pick up

changes in configuration – even if they don't

handle such changes on-the-fly);

• using local config files is impractical if Auto-

Scaling Group [5] handles instance

creation/termination (which is extremely

common for larger deployments); additionally,

not all cloud computing services support a

notion of a filesystem at all (AWS Lambda [6]

being a good example), which makes using local

files flat out impossible.

II. APPLICATION MODEL

To design a library solving the above-mentioned problem,

it would be helpful to define our application model in

greater detail (illustrated on Fig. 1 below):

• there is a set of application groups –

deployments – reflecting specific operating

environment (such as cloud or on-premises)

and/or specific stage in the system's lifecycle

(development, staging, etc);

• each deployment consists of one or more

applications, and each application can have one

or more versions running concurrently in the

deployment at any point in time;

• each application runs on one or more AWS EC2

instances (and, perhaps, on other AWS

computing services and on local development

workstations).

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 4, no. 1, 2016

 32

To match this model, several layers of configuration

information should be supported when configuring an

application:

• global configuration information (common for all

deployments and applications);

• deployment configuration information (common

for all applications within a deployment);

• application configuration information;

• configuration information for specific application

version.

Note that this particular model does not support instance-

specific configuration information. This is by design – for

most cloud services, there is either no notion of a tangible

instance at all, or instances are being constantly recycled

by instance governors, such as the one managing AWS

auto-scaling groups. However, the model can be easily

extended to support instance-specific configuration, if it is

absolutely required by the system.

III. PROPOSED SOLUTION

It is proposed to develop the configuration library with the

following primary design points in mind:

• should use Amazon S3 service [7] as a central

backing store for all configuration information;

• should extend java.util.Properties to

keep familiar and simple interface and file

format;

• should store configuration information in a set of

files and directories inside a single S3 bucket, to

simplify upload and access control;

• should automatically build a layered

configuration, with configuration options in more

specific files overriding same options from less

specific configuration files
1
;

• should, to the extent possible, automatically

determine identifying information about

deployment, application and application version;

should provide extension points to allow for

different information providers.

IV. IMPLEMENTATION DETAILS

Following the above requirements, a simple Java library,

named S3Properties – after its primary class – was

developed as an open-source project under the Apache

License, Version 2.0 (ASLv2, [8]), available at

https://github.com/options-util/s3properties. It was

originally developed as a cloud module prototype for

options-util configuration framework ([9], [10]), but

turned out to be quite useful without options-util support

as well.

The library assumes that each application can provide

three main identifying elements:

• deployment id;

• application id;

• version id;

By default, S3Properties will try to provide two out of

three values automatically:

• read deployment id from deploymentId tag on

the EC2 instance of the application;

• read version id from Implementation-Version

property in the application's MANIFEST.MF

file.

1 For example, if the same option named my.option is

defined in both deployment config file and

application config file, value from application config

should be used; similarly, an option from application

config file will be overridden by version-specific

config file option.

Fig. 1. Application Model

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 4, no. 1, 2016

 33

Of course, application can supply its own classes to

provide this information (more on that below), and it is

always responsible for providing its own name to the

library.

Using the library is straightforward. First, application

must obtain an instance of
org.plukh.s3properties.config

.S3Properties class. In the simplest case, no

parameters have to be supplied at all, library will

substitute reasonable defaults:

S3Properties props = new S3Properties();

More parameters can be specified in constructor, such as a

set of default properties or a custom S3 bucket name.

Alternatively, S3Properties can be configured via fluent

interface methods:

S3Properties props = new S3Properties()

 .withBucket("my.bucket")

 .withDefaultProperties(defaults)

 .withGlobalFileName("my.global.properties");

If default implementations for instance and version

information providers have to be replaced, they can either

be configured programmatically:

S3Properties props = new S3Properties()

 .withInstanceInfoProvider(

 new DummyInstanceInfoProviderImpl())

 .withVersionInfoProvider(

 new DummyVersionInstanceProvider());

or via Java system properties – for example, at application

startup via the command-line switch:

java -Dorg.plukh.s3properties.version.

versionInfoProviderClass=org.plukh.s3properties.

config.DummyVersionInstanceProvider -jar

myapp.jar

Loading properties is also straightforward:

//Load properties for application "ingress-app"

props.load("ingress-app");

Optionally, a local file name, or an InputStream can

be passed to load a local properties instance, which is

useful when running on a development workstation. If

properties can be read successfully from a local file or

from a stream, S3 isn't accessed at all, which allows to run

a local copy of the application without Internet access:

//Try to load local properties first

//If successfull, don't load S3 properties

props.load("ingress-app",

 "ingress-app-local.properties");

After S3Properties have been instantiated and

loaded, application can use them just like any other

Properties instance. Note that, to keep the layered

configuration contract intact, standard

Properties#load() methods will throw an

exception when accessed.

On the AWS S3 side of things, the following file structure

has to be suppported:

• all configuration information is stored inside a

common bucket, which by default should be

named "XXX-config", where XXX is the current

AWS account number
2
;

• at the top level of a bucket, a file with global

properties can be created (by default, it is aptly

named "global.properties"); this file will be

loaded by all applications in all deployments;

• also at the top level, a directory for each

deployment id (i.e., "staging", "production", etc)

can be created;

• inside deployment directory, a deployment

properties file (named

"<deploymentId>.properties") can be created;

this file will be loaded for all applications

running in this specific deployment;

• also inside deployment directory, directories for

all application names can be created (i.e.,

"ingress-app", "processing-app", etc);

• inside application directory, a file named

"<applicationName>.properties" (i.e., "ingress-

app.properties") can be created; this file will be

loaded for all application versions of this

application;

• finally, a file named "<applicationName>-

<versionId>.properties" (i.e., "ingress-app-

1.0.properties") can be created inside the

application directory; this will be loaded for a

specific version of a specific application.

All files and directories are optional, but the library

expects to find at least one valid configuration file along

the configuration file hierarchy. Global properties file

name can be overridden, but deployment and application

file naming scheme is fixed.

S3Properties is available from Maven Central, at the

following coordinates:

groupId : org.plukh

artifactId: s3properties

version : 1.0

V. CONCLUSION

S3Properties library provides a simple but powerful

interface to a multi-application multi-layer configuration

information for applications running in the Amazon Web

Services environment. The library has reasonable

coverage via unit tests and has reached stable 1.0 status,

so it can be (and is) used in actual production

environments. This library will serve as a solid

foundation for any future work focused on managing run-

time configuration of cloud-based applications.

VI. FUTURE WORK

An obvious extension would be to integrate this library as

an optional module for options-util configuration

2 S3 bucket names are globally unique, so the static

default name, like simply "config", can't be used in

this case.

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 4, no. 1, 2016

 34

management framework. This involves implementing a

PersistenceProvider to handle configurations

options loading (and, possibly, saving as well), and

making it available to user applications. This work is well

underway.

Additionally, current rigid reliance on file format

(.properties) and file provider (Amazon S3) can be

replaced with more generic interfaces, allowing to

implement support for additional file formats and

configuration sources, with or without options-util

support.

REFERENCES

[1] Web container [Online]. Available:

https://en.wikipedia.org/wiki/Web_container

[2] Elastic Load Balancing [Online]. Available:

https://aws.amazon.com/elasticloadbalancing/

[3] Push Delivery [Online]. Available:

http://dev.datasift.com/docs/deliver/push

[4] Graylog Extended Log Format [Online].

Available:

https://www.graylog.org/resources/gelf/

[5] Auto Scaling [Online]. Available:

https://aws.amazon.com/autoscaling/

[6] AWS Lambda [Online]. Available:

https://aws.amazon.com/lambda/

[7] Amazon Simple Storage Service (Amazon S3)

[Online]. Available: https://aws.amazon.com/s3/

[8] Apache License Version 2.0 [Online]. Available:

http://www.apache.org/licenses/LICENSE-2.0

[9] V. Denisov. Annotations-driven configuration

framework for Java applications. International

Journal of Open Information Technologies ISSN:

2307-8162 3(10), 2015. Available:

http://injoit.org/index.php/j1/article/view/237

[10] Options-util: annotation-based Java configuration

helper library. Available:

https://github.com/options-util/options-util

