
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 3, no. 10, 2015

 11

Abstract—In this paper, we describe the memory

management issues in JavaScript applications. Nowadays,

JavaScript has become a mainstream programming

environment. Modern applications in JavaScript are complex

software systems. We can mention here web portals, online

games, Internet of Things (Web of Things) applications, and

even data mining code. Of course, JavaScript memory

management becomes a critical aspect of the development (and

deployment) process. In this paper, we discuss the memory

leaks patterns in JavaScript code as well as the basic issues

behind garbage collection in JavaScript engines.

Keywords—JavaScript, memory management, memory leaks,

garbage collector.

I. INTRODUCTION

Originally, JavaScript uses garbage collection for

automatic memory management. But in the same time, for

example, the old conception of web page life cycle (full page

refresh) is no more in use. So, in the web programming, we

have to deal with long-lived components and the increased

complexity. So, JavaScript memory management becomes

an even more critical aspect of the development (and

deployment) process. The developers will need to

understand and deliberately manage the individual lifecycles

and memory footprints of the components in their

applications. There are different components affecting

JavaScript memory distribution. We can mention here DOM

Elements (one of the main sources for memory management

difficulties), JavaScript Objects as well client-side cache.

Usually, there are two main sources for memory-related

issues in JavaScript [2]:

• Orphaned objects.

• Circular references.

Both ways are easily achievable due to “simplicity” of the

language. So, it is very important for the developers to

understand the background of possible memory-related

issues, the associated measurements as well as the solutions

which help to avoid them.

Usually, in JavaScript applications, developers do not

carry about memory management. Objects could be easily

Manuscript received Sep 15, 2015.

Evgeniy Ilyushin is with Lomonosov Moscow State University (e-mail:

john.ilyushin@gmail.com).

D. Namiot is with Lomonosov Moscow State University (e-mail:

dnamiot@gmail.com).

created and reused, where JavaScript engine (its garbage

collector) takes care about low-level details. The central

concept of JavaScript memory management is a concept of

reachability [3]. A distinguished set of objects are assumed

to be reachable: these are known as the roots. Typically,

these include all the objects referenced from anywhere in the

call stack (that is, all local variables and parameters in the

functions currently being invoked), and any global variables.

Objects are kept in memory while they are accessible from

roots through a reference or a chain of references [4]. And

there is a Garbage Collector (GC) in the JavaScript engine

(in the browser), which cleans memory occupied by

unreachable objects [5].

Let us see the following classical example with JavaScript

closures [6]. The closure makes all variables of outer

functions persist while the inner function is alive. So,

suppose our application creates a function and one of its

variables contains a large string [4]. While the function inner

stays in memory, then the variable data will hang in memory

until the inner function is alive. JavaScript engine could

have no idea which variables may be required by the inner

function, so it keeps everything.

The next classical example is saving JavaScript data in

Document Object Model (DOM) [7].

The rest of the paper is organized as follows. In Section 2,

we discuss the memory leaks patterns in JavaScript. In

Section 3, we describe the measurements and memory

profiling in various systems. In Section 4, we discuss

garbage collectors in JavaScript. And Section 5 is devoted to

garbage collectors benchmarks.

II. MEMORY LEAKS PATTRNS

In this section, we would like to discuss memory leaks

patterns in JavaScript.

Let us see the details for the above mentioned closure

example.

function f() {

 var data="Some Large Piece of data .

. . ";

 /* do something using data */

function inner() {

 // . . .

 }

 return inner;

}

Here the life time for function inner is unknown, so, we

have to keep in memory the variable data too.

On Memory Management in JavaScript
Applications

Evgeniy Ilyushin, Dmitry Namiot

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 3, no. 10, 2015

 12

The Circular references present another classical example

of memory leaks.

var obj;

function circular_references() {

obj=document.getElementById("bigdata");

document.getElementById("bigdata").expan

doProperty = obj;

 obj.bigString=new

Array(1000).join(new

Array(2000).join("XXXXX"));

}

In this example, the global variable obj refers to the DOM

element bigdata. At the same time, bigdata element refers to

the global object through its expandoProperty.

We can see the combination of closures and circular

references:

function closureFunction()

{

 var leak =

document.getElementById("element");

 leak.onclick=function

innerFunction(){

 alert("Hi! I will leak");};

 leak.bigString = new

Array(1000).join(new

Array(2000).join("XXXXX"));

};

Here a JavaScript object leak contains a reference to a

DOM object (referenced by the ID "element"). The DOM

element, in turn, has a reference to the JavaScript object

leak. The resulting circular reference between the JavaScript

object and the DOM object causes a memory leak.

One of the most common places associated with memory

leaks are setTimeout ()/setInterval () functions.

var obj = {

 callMeMaybe: function () {

 var myRef = this;

 var val = setTimeout(function () {

console.log('Time is running out!');

 myRef.callMeMaybe();}, 1000);

 }

};

obj.callMeMaybe();

obj = null;

After this section of code, timer still continues to work.

An object obj isn't cleared, because the closure was

transferred to setTimeout function and must be maintained

for the future performance. In turn, it holds a reference to the

life safety as it contains myRef. This would be the same if we

handed the closure of any other function while retaining the

link.

A rule of thumb for all JavaScript applications is obvious.

Developers should avoid holding references to DOM

elements they no longer need to use, unbind unneeded event

listeners and analyze all use cases when storing large chunks

of data they are not going to use.

III. MEMORY MEASUREMENTS

Of course, we need some metrics for memory

management. In this section, we would like to discuss

memory leaks detection and profiling. There are two main

instruments: Google’s Chrome Developer [8] and Mozilla

Developer [9].

In Chrome Developer Tools, Timeline memory view and

Chrome task manager can help developers identify if they

are using too much memory. Memory view can track the

number of live DOM nodes, documents, and JS event

listeners in the inspected render process. The Object

allocation tracker can help narrow down leaks by looking at

JS object allocation in real-time. Developers can also use the

heap profiler to take JS heap snapshots, analyze memory

graphs and compare snapshots to discover what objects are

not being cleaned up by garbage collection. It is illustrated

in Figure 1.

Figure 1. Chrome Developer Tools [10]

And Figure 2 presents an example of the report. Red

nodes (which have a darker background) do not have direct

references from JavaScript to them, but are alive because

they’re part of a detached DOM tree. There may be a node

in the tree referenced from JavaScript (maybe as a closure or

variable) but is coincidentally preventing the entire DOM

tree from being garbage collected.

Yellow nodes (with a yellow background) however do

have direct references from JavaScript.

Figure 2. Google Chrome Developer Report [10].

Firefox tool for Garbage Collection measurements looks

similar (Figure 3).

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 3, no. 10, 2015

 13

Figure 3. Firefox memory leaks measurements [2]

Actually, Mozilla provides a list of tools for memory-

related measurements [11]. Fox example, Firefox’s

about:memory page presents fine-grained measurements of

memory usage. It is illustrated in Figure 4:

Figure 4. Memory usage in Firefox.

Actually, there is a wide list of memory-related

measurement tools for Firefox. On practice, most of them,

probably, are unknown for developers. The above-

mentioned about:memory is the easiest-to-use tool for

measuring memory usage. It also lets developers do other

memory-related operations like trigger GC and CC, dump

GC & CC logs. This tool has got also a special

“explanation” reporting – DMD. MD is a tool that identifies

shortcomings in about:memory's measurements. The full list

of tools (Bloatview, Refcount, GC logs, etc.) is provided in

[11]. In the same time, as our experience confirms, many of

the tools mentioned on page [11] are either obsolete or not

supported anymore.

IV. GARBAGE COLLECTION IN JAVASCRIPT

The basic algorithms for Garbage Collectors are well

known and widely presented in academic papers [12-13].

Let is review some of the popular choices.

The reference counting algorithm is one of most

transparent. An object is considered to be garbage when no

references to that object exist. A simple expedient is to keep

track in each object of the total number of references to that

object. So, the implementation should add a special field to

each object called a reference count. Also, every time one

reference is assigned to another, the reference counts must

be adjusted as above. This increases significantly the time

taken by assignment statements.

With reference counting, the garbage (unused data) is

easily identified. When it becomes necessary to reclaim the

storage from unused objects, the garbage collector needs

only to examine the reference count fields of all the objects

that have been created by the program. If the reference count

is zero, the object is garbage. But in the same time, depends

on memory allocation scheme, we will still face

fragmentation problems.

As far as we understand, at this moment JavaScript

engines do not use reference counting in garbage collection.

It is used in PHP, for example [14]. Note, that academic

papers describe some high-speed reference counting garbage

collectors [15-16].

The classical problems for reference counting are so-

called circular references (Figure 5).

Figure 5. Circular references.

In the figure, the variable head refers to the head of the

linked list and the last element of the linked list also refers to

the head. Therefore, the reference count on the first list

element is two; whereas, the remaining list elements all have

a reference count of one. Nevertheless, the reference

counting is an extremely useful technique for dealing with

simple objects that don't refer to other objects, such as

Strings. So, by our opinion, it is an open question: can we

use reference counting as a part of the whole garbage

collecting process? E.g., we can use it for String only (there

are no circular references). Actually, for JavaScript, String

objects are most used in practical applications.

The mark-and-sweep algorithm was the first garbage

collection algorithm to be developed for processing cyclic

data structures. Variations of the mark-and-sweep algorithm

continue to be among the most commonly used garbage

collection techniques. At this moment, it is utility

(commodity) stuff, deployed as a part of many garbage

collectors. The mark-and-sweep algorithm is called a tracing

garbage collector because is traces out the entire collection

of objects that are directly or indirectly accessible by the

program. The objects that a program can access directly are

those objects, which are referenced by local variables on the

processor stack as well as by any static variables that refer to

objects. In the context of garbage collection, these variables

are called the roots. An object is indirectly accessible if it is

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 3, no. 10, 2015

 14

referenced by a field in some other (directly or indirectly)

accessible object. Any accessible object is considered to be

live. Any other objects are garbage.

The mark-and-sweep algorithm consists of two phases. In

the first phase (mark), it finds and marks all accessible

objects. During the second phase (sweep), the algorithm

walks through the list of objects and reclaims all the dead

objects. The mark-and-sweep algorithm can correctly

proceed cycled references. Also, we do not need to introduce

additional fields (like reference counter) for our data. The

main disadvantage of the mark-and-sweep approach is the

fact that that normal program execution is suspended while

the garbage collection algorithm runs. It is so-called stop-

the-world garbage collector.

The copying garbage collector (sometimes is called stop-

and-copy and semi-space collector) starts from a set of roots

and traverse all of the reachable memory-allocated objects,

copying them from one-half of memory into the other half.

The area of memory that we copy from is called old space

and the area of memory that we copy to is called new space.

When we copy the reachable data, we compact it so that it is

in a contiguous chunk. This procedure lets us avoid memory

fragmentation.

The mark-compact GC is some combination of copying

and mark-and-sweep [17]. In the first phase (mark), it finds

and marks all live objects. In the second phase (compact),

the garbage collection algorithm compresses the heap by

moving all the live objects into contiguous memory

locations.

The generational garbage collector is based on the idea of

partitioning of live objects. This partitioning procedure is

based on time of memory allocation. We assume that most

objects are discarded shortly after being used. So, we can

deploy different GC policies to different partitions. The

policy depends on objects’ age. Many generational GC's are

not comprehensive - they don't successfully remove all the

garbage (long-lived garbage, in particular, may never get

collected) [18].

All the garbage collectors in JavaScript engines we know

are generational.

JavaScriptCore uses Generational Collector. As per their

manual: “The garbage collector in JavaScriptCore has been

improved quite a bit from the earliest versions. But much

greater efficiency can be achieved with a garbage collector

that uses a generational algorithm, so we don't have to mark

all the objects every time we garbage collect. This should

make JavaScript run significantly faster” [19].

SpiderMonkey user generational collection [20]. V8

Garbage Collector is generational collector too [21].

So, all the above mentioned JS engines use generational

collectors. The differences are lying in two areas:

- How to divide a memory

- How to present the objects

Interesting, that all the above-mentioned implementations

are stop-the-world. A sub-collector (an algorithm for

garbage collecting within the generation) is still mark-and-

sweep. Of course, there are many improvements for the

classical mark-and-sweep. We can mention, for example, a

lazy sweeping [22]. Mark-region improves the mark-sweep

by dividing the heap in several regions and compacts objects

to one end of the regions, and can thus reduce memory

fragmentation [23]. Garbage-First (G1) works in per-region

manner, marks objects and then evacuates them from current

regions to new ones so that current regions can be reclaimed

as a whole [24]. It is a garbage collector in Oracle JDK

[25].

Mark-split removes the sweep phase from mark-sweep,

and thus achieves a time complexity proportional to the size

of the live data set. However, this comes with an overhead

cost of maintaining a set of free memory intervals. The

number of free intervals is much smaller than the number of

live objects because some live objects reside adjacent to

each other. It seems beneficial, in certain situations, to avoid

the sweep phase at the cost of this overhead, which depends

on the distribution of live objects and also highly on the data

structure selected to store the free intervals. The data

structure should preferably provide search for an interval at

sub-linear cost, e.g., binary search trees, splay trees, or skip-

lists [26].

By our opinion, there are at least two most interesting

questions. At the first hand, it is not clear at this moment,

why JavaScript engines do not use non-stop-the-world

garbage collectors. There are concurrent and parallel

implementations for mark-and-sweep, for example. They

have been tested with Java, for example [27]. But we have

not seen yet such implementations in connection with

JavaScript. As seems to us, such a movement would be in

line with the common trend to add concurrency into

JavaScript [28].

The second interesting moment is the policy for running

the garbage collector. Actually, it should be more complex

than a simply timer-based event or percentage of free

memory. It is especially true for the mobile web with

relatively limited resources on mobile phones. Just think

about the stop-the-world action in the middle of filling some

form on the screen. In the same time, a quick stop action

could be almost “invisible” during the AJAX request, when

a user is waiting for the response anyway. In other words,

the policy for running garbage collector should be based on

the behavior and depends on the application.

V. GARBAGE COLLECTION BENCHMARKS

As per GC benchmarks, they are really light. The code

below demonstrates GC benchmark from Mozilla:

function bigHeap(N) {

 var result = [];

 for (var i = 0; i < N; i++)

 result.push({ 'number': i,

'prev': result[-1] });

 return result;

}

function add(a, b) {

 return [a[0] + b[0], a[1] + b[1]];

}

 function vecfib(n) { var v1 = [0,

0]; var v2 = [1, 1];

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 3, no. 10, 2015

 15

 for (var i = 0; i < n; i++) {

 var v = add(v1, v2); v1 =

v2; v2 = v; }

 return v1; }

 var t = {};
var iters = 10000000;

t.smallheap_start = Date.now();

var dummy1 = vecfib(iters);

t.smallheap_end = Date.now();

H = bigHeap(10000000);

t.bigheap_start = Date.now();

var dummy2 = vecfib(iters);

t.bigheap_end = Date.now();

print("Small heap: " +

((t.smallheap_end - t.smallheap_start) /

iters) * 1000000 + " ns/iter");

print("Big heap: " + ((t.bigheap_end -

t.bigheap_start) / iters) * 1000000 + "

ns/iter");

As per benchmarks for V8 garbage collector, there is

Splay file in V8 benchmark suite. As per Splay description:

“Data manipulation benchmark that modifies a large splay

tree to exercise the automatic memory management

subsystem. The benchmark builds a large splay tree in a

setup phase and then measures how fast nodes can be added

and removed” [29]. The source code for Splay could be

found in [30].

REFERENCES

[1] Wagner, G., Gal, A., Wimmer, C., Eich, B., & Franz, M. (2011,

June). Compartmental memory management in a modern web

browser. In ACM SIGPLAN Notices (Vol. 46, No. 11, pp. 119-128).

ACM. DOI= http://dx.doi.org/10.1145/2076022.1993496.

[2] Ilyushin, E., & Namiot, D. (2015). On JavaScript Memory Leaks.

International Journal of Open Information Technologies, 3(7), 27-31.

[3] Pienaar, J. A., & Hundt, R. (2013, February). JSWhiz: Static analysis

for JavaScript memory leaks. In Code Generation and Optimization

(CGO), 2013 IEEE/ACM International Symposium on (pp. 1-11).

IEEE. DOI= http://dx.doi.org/ 10.1109/CGO.2013.6495007.

[4] JavaScript memory leaks http://javascript.info/tutorial/memory-leaks

Retrieved: Jun, 2015.

[5] Maffeis, Sergio, John C. Mitchell, and Ankur Taly. "An operational

semantics for JavaScript." Programming languages and systems.

Springer Berlin Heidelberg, 2008. 307-325.

[6] CHEN, Y., & ZHOU, X. (2011). JavaScript Closures Research &

Typical Applications. Computer Programming Skills & Maintenance,

10, 012.

[7] Heilmann, C. (2006). Beginning JavaScript with DOM scripting and

Ajax: from novice to professional. Apress.

[8] Chrome Developer tools https://developer.chrome.com/devtools

Retrieved: Jun, 2015

[9] Mozilla Developer https://developer.mozilla.org/en-

US/docs/Tools/Performance/Waterfall#Garbage_collection Retrieved:

Jun, 2015

[10] Chrome Developer Memory Profiling

https://developer.chrome.com/devtools/docs/javascript-memory-

profiling Retrieved: Jun, 2015

[11] Mozilla Performance https://developer.mozilla.org/en-

US/docs/Mozilla/Performance

[12] R. Jones and R. Lins. Garbage Collection: Algorithms for Automatic

Storage Management. John Wiley & Sons Ltd, 1996.

[13] Bruno R. Preiss. (2000). Data Structures and Algorithms with Object-

Oriented Design Patterns in Java. John Wiley & Sons Incorporated.

[14] Suzumura, T., Trent, S., Tatsubori, M., Tozawa, A., & Onodera, T.

(2008, September). Performance comparison of web service engines

in php, java and c. In Web Services, 2008. ICWS'08. IEEE

International Conference on (pp. 385-392). IEEE.

[15] Levanoni, Y., & Petrank, E. (2006). An on-the-fly reference-counting

garbage collector for java. ACM Transactions on Programming

Languages and Systems (TOPLAS), 28(1), 1-69.

[16] Blackburn, S. M., & McKinley, K. S. (2003, October). Ulterior

reference counting: Fast garbage collection without a long wait. In

ACM SIGPLAN Notices (Vol. 38, No. 11, pp. 344-358). ACM.

[17] Jones, R., Hosking, A., & Moss, E. (2011). The garbage collection

handbook: the art of automatic memory management. Chapman &

Hall/CRC.

[18] Tauro, C. J., Prabhu, M. V., & Saldanha, V. J. (2012). CMS and G1

Collector in Java 7 Hotspot: Overview, Comparisons and

Performance Metrics. memory, 43(11).

[19] JavaScript Core engine https://www.webkit.org/projects/javascript/

Retrieved: Jun, 2015

[20] SpiderMonkey Garbage Collector

https://fosdem.org/2015/schedule/event/spidermonkey_garbage_colle

ction_update/ Retrieved: Jun, 2015

[21] V8 Garbage Collector http://jayconrod.com/posts/55/a-tour-of-v8-

garbage-collection Retrieved: Jun, 2015

[22] Hughes, R.J.M.: A semi-incremental garbage collection algorithm.

Software: Practice and Experience 12(11), 1081–1082 (1982)

[23] Blackburn,S.M., McKinley,K.S.:Immix:Amark-region garbage

collector with space efficiency, fast collection, and mutator

performance. SIGPLAN Not. 43(6), 22–32 (2008)

[24] Detlefs, D., Flood, C., Heller, S., Printezis, T.: Garbage-first garbage

collection. In: Proceedings of the 4th ISMM, pp. 37–48. ACM (2004)

[25] Garbage First in Oracle

http://docs.oracle.com/javase/7/docs/technotes/guides/vm/G1.html

[26] Sagonas, K., Wilhelmsson, J.: Mark and split. In: Proceedings of the

5th International Symposium on Memory Management, ISMM 2006,

pp. 29–39. ACM (2006)

[27] Nguyen, Nhan, Philippas Tsigas, and Håkan Sundell. "ParMarkSplit:

A Parallel Mark-Split Garbage Collector Based on a Lock-Free Skip-

List." Principles of Distributed Systems. Springer International

Publishing, 2014. 372-387.

[28] Namiot, D., & Sukhomlin, V. (2015). JavaScript Concurrency

Models. International Journal of Open Information Technologies,

3(6), 21-24.

[29] V8 benchmark http://blog.chromium.org/2010/10/v8-benchmark-

suite-updated.html Retrieved: Jun, 2015

[30] Splay-tree

http://v8.googlecode.com/svn/branches/bleeding_edge/benchmarks/s

pinning-balls/splay-tree.js Retrieved: Jun, 2015

