
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 3, no. 10, 2015

 16

Annotations-driven configuration framework for

Java applications
Victor S. Denisov

Abstract – Modern features of Java software platform

allow developers to create a new generation of

application configuration frameworks with advanced

features, such as type-safety, easy extendability and

self-documentation. This paper describes an early

prototype implementation of such a framework,

currently under development as an open-source

project.

Keywords — application configuration management,

application settings management, framework, Java,

open-source, options-util.

I. INTRODUCTION

Runtime configuration is an indispensable feature for most

real-world production applications. Over the years, a

typical pattern for configuration management had emerged

– configuration options are stored in some kind of

persistent storage (most often, as one or more files on a

host's filesystem) and are read at start-up (and, possibly,

later as well – when the configuration file changes, for

example) and the options are stored in some sort of

internal configuration object(s) for future reference from

appropriate application modules.

When a pattern can be detected, a framework (or two)

which simplifies application's implementation according

to that pattern usually follows. This is the case with

configuration management as well – see [1] for an

overview of some existing frameworks for configuration

management of Java applications.

Unfortunately, frameworks mentioned in [1] hadn't kept

pace with recent developments in the Java programming

language (such as annotations), other Java-related

technologies (such as dependency injection and cloud

computing) as well as an overall increase in complexity of

typical Java applications (which calls for reliability and

readability enhancements such as type-safety, self-

documenting code and thorough unit testing). This calls

for a new generation of configuration frameworks,

requirements for which had been summarized in [2].

This paper presents an overview of a prototype of such a

modern configuration framework, named options-util

which is being developed as an open-source project under

the Apache Software License, Version 2.0 [3], available at

https://github.com/options-util/options-util.

 Victor S. Denisov is with the Lomonosov Moscow State University

(e-mail: vdenisov@plukh.org).

II. DEVELOPMENT GOALS

Options-util framework was developed to match

functional requirements for a modern application

configuration framework. To summarize from [2]:

• Common requirements:

� platform independence;

� unit and integration tests;

� support of dependency injection.

• Specific requirements:

� minimal number of dependencies;

� annotation-driven configuration;

� self-documentation of configuration

options;

� support of cloud services;

� type-safety;

� support for different configuration

sources/persistent backing stores;

� extensibility;

� support for complex data structures;

� support for value validation and conversion;

� runtime configuration changes/change

listeners;

� support for structured configuration

information.

Right now, options-util is in an early prototype phase

(version 0.1), with only the most important and

architecture-defining features implemented. As

development goes on, it is expected that this framework

will evolve to meet all of the above requirements.

III. CORE CONCEPTS

The core concept of options-util is the so-called options

interface, which defines all configuration options in use

by the application via appropriate getter and setter

methods – which are, in turn, decorated with annotations

to provide additional semantic information to the

framework at runtime. Here's a very simple example of

the options interface:

@Persistence(PersistenceType.TRANSIENT)

public interface TestOptions extends Options {

 @Option(key = "int")

 int getInt();

 void setInt(int value);

 @Option(defaultValue = "5")

 int getIntWithDefault();

 void setIntWithDefault(int value);

}

Even from this brief example, a couple of important

points about the configuration interface can be

discovered:

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 3, no. 10, 2015

 17

• an interface can be decorated with a persistence

provider annotation, which attaches the specified

provider to the configuration – a class which will

provide access to the persistent backing store;

• all interfaces extend the common interface

(org.plukh.options.Options), which

defines some common configuration

management methods.

• configuration information is accessed via type-

safe method calls;

• @Option annotation provides additional

information to the framework (in the example

above, a value for the key for the property in the

backing store for one option and a default value

for another).

Another core concept is an OptionsFactory, which

creates an instance of the interface using a dynamic proxy

class. Instantiating the configuration class is trivially easy:

MyOptions options = (MyOptions)

 OptionsFactory

 .getOptionsInstance(MyOptions.class)

OptionsFactory provides the same (thread-safe)

options instance for all invocations of

getOptionsInstance for a certain interface class,

thus ensuring that all application components share the

same set of configuration properties.

IV. MEETING COMMON FUNCTIONAL REQUIREMENTS

In the current release, 2 out of 3 common requirements

have been met. The only exception is dependency

injection support, which will be coming in future releases.

A. Platform independence

Code for options-util does not make any assumptions

about the platform it is running on
1
. Specifically:

• it doesn't assume that the platform has a

filesystem, unless one of file-based persistence

providers is used;

• it doesn't use byte code manipulation;

• it does not log its output anywhere but on the

console (and even then, only when there is an

error which can't be communicated in any other

way);

• it does not create threads or use thread-related

functions
2
;

• it is extremely light on resources and imposes a

very small CPU/memory overhead (less than

2MB of memory is used by the framework itself

1 This is true about the framework itself; unit tests do

make certain (minimal) assumptions, such as presence

of a filesystem with a writable temporary directory.

2 In a future release, instance of the Timer class, if

available, will be used to periodically refresh

information from the persistent backing store; if

unavailable, a platform-specific fall back, such as [4],

will be used instead.

in a steady state
3
, including all the data

structures and loaded classes, with the majority

of memory used by common Java classes which

would probably be loaded by any application,

such as classes from java.lang and

java.util packages).

B. Unit and integration tests

Options-util is covered by an extensive suite of unit and

integration tests, with current line coverage reaching

74%. Lines not covered by tests are mostly trivial

getters/setters and constructors. As issues are discovered

within the framework, regression tests are implemented to

guard against re-occurrence of the problem.

C. Support of dependency injection

So far, support for dependency injection had not been

implemented. Support for Spring [5] and Guice [6]

frameworks is planned for one of the next releases, with

support for Java EE CDI [7] being under consideration.

V. MEETING SPECIFIC REQUIREMENTS

In the current release, 8 out of 11 requirements have been

met (at least partially). Support for cloud services will be

partially implemented in the next release, bringing the

total to 9 out of 11. Remaining requirements (specifically,

runtime configuration change listeners and structured

configuration information) will be met eventually, as the

framework matures.

A. Minimal number of dependencies

Current release has no external runtime dependencies at

all. It is expected that it will stay this way for core

functionality for the foreseeable future. Features which

require external dependencies will be separated into

independent optional modules, which will have to be

explicitly added to a classpath (manually or via a

dependency management framework such as Maven).

Such modules will be dynamically discovered at runtime,

with options-util failing gracefully (to the extent possible)

if a certain feature is not available.

B. Annotation-driven configuration

As can be seen from an example in section III, options-

util uses annotations to provide additional runtime

information about various aspects of the application's

configuration information management. In the current

version, the following annotations have been defined:

• @Option – defines properties of a basic scalar

option;

• @CollectionOption – defines properties of

a set of options backed by one of Java's built-in

collection interfaces;

• @Persistence – defines information about

the persistent backing store, including

3 As determined by running a dedicated test exercising

framework's functionality, and recording memory

allocation data via a YourKit Java Profiler.

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 3, no. 10, 2015

 18

information about the type of the store to be used.

In the next release, they will be joined by several new

annotations, including some specific to certain operating

environments (such as @AWSTags, specific for

configuration inside an AWS EC2 instance).

C. Self-documentation of configuration options

Let's consider the following options interface:

@Persistence(PersistenceType.PROPERTIES_FILE)

public interface TweetCaptureOptions extends Options {

 @Option(key = "jdbc.url")

 String getDatabaseURL();

 @Option(key = "workerthreads", defaultValue = "5")

 int getWorkerThreads();

 @CollectionOption(backingClass =

LinkedBlockingQueue.class, transientOption = true)

 Queue getWorkerQueue();

}

As with example in section III, a couple of points are

evident from the above, even without knowing all the

specifics of options-util:

• the interface contains three, and only three

available configuration options;

• configuration information is available in a

properties file-based storage;

• first option returns a String-valued URL for

database connection; it is read-only (as evidenced

by a lack of a setter); and its key in the persistent

backing store is "jdbc.url";

• second option returns an integer value for a

number of worker threads in this application; and

its key and default value (which happens to be

"5" in this case) can also be determined from the

annotation;

• finally, the third option provides a queue, backed

by the LinkedBlockingQueue

implementation from Java Collections

Framework; it is set as transient, so it won't be

read nor written to the backing store.

Generally, the following information is automatically

documented simply by defining it in the options interface:

• type of persistence used to store configuration

information;

• all supported configuration options, along with

their type and default value;

• keys for all configuration options in the backing

store (with defaults available when the key is not

specified explicitly);

• backing classes for collection options (with

default implementations used when no explicit

class is provided);

• state of persistence (writeability) of each option –

options without setters will not be persisted to the

backing store; also, options can be explicitly

marked as read-only, so any changes to their

values would be transient.

D. Support of cloud services

This requirement is partially implemented in the current

development version: for Amazon Web Services EC2

instances, configuration information can be persisted to a

file stored on the AWS Simple Storage Service (S3) [8].

Configuration file(s) can be differentiated by AWS

instance id or by an ordered combination of tags specified

by an @AWSTags annotation.

E. Type-safety

As can be seen in examples in sections III and V.C,

options interface is fully type-safe – type checking is

guaranteed at compile time. Underlying implementation

(including dynamic proxy handler and value converters)

can break this contract, which will result in a runtime

exception.

Note that generic types are not supported at this time, as,

due to type erasure by the Java compiler, getting

information about a generic type at runtime is impossible

without resorting to various kludges.

F. Support for different configuration

sources/persistent backing stores

Current options-util release supports several backing

stores by default, including .properties-based and XML-

based files and a JDBC data source. Framework can be

easily extended with custom persistence providers,

allowing for support for arbitrary backing stores by the

application's developer.

In the following releases, support for additional backing

stores is planned:

• Core module:

� JSON files;

� Properties, XML and JSON over HTTP;

� Properties, XML and JSON from classpath;

� key-value mappings from system properties

and environment variables;

� JMX support;

• AWS module:

� Properties, XML and JSON over AWS S3;

� DynamoDB key-value store;

� Instance metadata;

• GCP module:

� Google App Engine Datastore;

� Instance metadata;

• Azure module:

� DocumentDB.

Additionally, next release will add support for persistence

providers chaining, which will allow to combine multiple

configuration sources together in an ordered fashion, thus

eliminating gaps between capabilities of different

environments. For example, a typical configuration chain

for an application designed to run both on a local

development machine, and on an AWS EC2 instance, can

look like this:

• read default configuration file from classpath;

• try to read configuration file on a local

filesystem, if found → process and abort chain;

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 3, no. 10, 2015

 19

• read configuration information from a global S3

object;

• override parts of that information with

information from an instance-specific S3 object.

G. Extensibility

Options-util supports several extension points.

Applications developer can plug in a custom persistence

provider implementation, a persistence chain

implementation and an option type handler (value

converter) implementation. As the framework evolves,

additional extension points will likely be identified and

implemented.

H. Support for complex data structures

Options-util supports arbitrary Java objects as entities for

configuration information, provided that developers

implement a converter which would allow to

unambiguously convert human-readable strings to and

from object values. Built in converters include:

• all Java primitive types and their object

wrappers;

• java.lang.String;

• java.util.Date;

• any class that extends

java.util.Collection interface.

Ultimately, it is the task of the converter's developer to

create a serialization/deserialization scheme that would be

both unambiguous and human-readable enough to allow

for editing of configuration information by hand.

Right now, the major limitation of the framework is that

value converters are determined by option type (they're

known as exactly that – option type handlers – internally),

so that, for example, there can't be two different

java.util.Date converters active at the same time

(for example, to handle different date/time formats). It is

expected that this limitation will be removed in a future

release.

In the future, additional built-in converters will be

implemented, including converters for arbitrary Java

beans (using a variety of serialization approaches), maps

and popular utility classes such as those from Google

Guava Collections [9] and Joda Time [10] libraries.

I. Support for value validation and conversion

When handling data prepared and/or edited by human

hand, it is extremely important to be lenient to minor

errors in value formats, as well as fail gracefully on major

errors.

Leniency on conversion is the responsibility of the option

type handler. Built-in handlers try to provide leniency

whenever possible; for example, built-in

java.util.Date converter will try to parse

dates/times in a number of short, medium and long

formats before giving up and throwing an exception.

When handling configuration information retrieval from a

persistent store (when human-readable strings are

deserialized into Java objects), application can choose one

of two strategies: strict and flexible. When strict load

policy is enforced, framework will throw an exception on

the first fatal conversion issue encountered, and no option

values will be changed at all; this policy is well-suited for

non-interactive applications, which typically can't

continue without retrieving their runtime configuration.

When flexible policy is chosen, conversion errors will be

detected and stored by the framework (to lately be

retrieved by the application), but all option values that

converted without errors will be set; this policy is better

suited for interactive applications, which can prompt user

to. i.e., fix detected configuration issues.

Support for declarative value validation (similar to, or

directly based on, JavaBean Validation API [11]) is

currently not implemented; each option type handler can,

however, enforce their own set of restrictions on values it

can accept.

VI. CONCLUSION

Options-util is a prototype implementation of a modern

annotations-driven application configuration framework.

Currently on release version 0.1
4
, it already is used in

production, successfully managing configuration of

several proprietary applications running in the AWS

computing cloud. With existing and planned features such

as type safety, different backing store providers and

provider chaining and dependency injection support, it

suits both small and large development projects running

in the variety of environments, from cloud platforms to

desktop computers.

VII. FUTURE WORK

In the next release, options-util framework will receive an

implementation of persistence provider chaining, in the

form of both a simple annotation-based chaining, as well

as a more complex chain builder class. Additionally,

support for AWS S3 as a backing store will be fully

implemented.

As mentioned elsewhere in this paper, in the subsequent

near-term releases, the following features are planned for

implementation:

• dependency injection support (Guice, followed

by Spring);

• support for other types of persistent providers;

split of providers into format providers and

storage providers;

• support for serialization/deserialization of

arbitrary Java beans.

For longer term, primary focus of development would be

on adding additional persistence providers, implementing

value validation and on adding support for structured

configuration in the form of options sub-interfaces.

REFERENCES

[1] Denisov, V. (2013). Overview of Java

application configuration frameworks. International

4 Following semantic versioning approach, see [12]

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 3, no. 10, 2015

 20

Journal of Open Information Technologies, 1(6), 5-9.

Available: http://injoit.org/index.php/j1/article/view/33

[2] Denisov, V. (2015). Functional requirements for a

modern application configuration framework.

International Journal of Open Information Technologies,

3(10), 6-10.

[3] Apache License, Version 2.0 (January 2004)

[Online]. Available:

http://www.apache.org/licenses/LICENSE-2.0.txt

[4] Scheduled Tasks With Cron for Java [Online].

Available:

https://cloud.google.com/appengine/docs/java/config/cron

[5] Spring Framework [Online]. Available:

http://projects.spring.io/spring-framework/

[6] Google Guice [Online]. Available:

https://github.com/google/guice

[7] Contexts & Dependency Injection for Java

[Online]. Available: http://www.cdi-spec.org/

[8] Amazon S3 [Online]. Available:

https://aws.amazon.com/s3/

[9] Guava: Google Core Libraries for Java [Online].

Available: https://github.com/google/guava

[10] Joda-Time [Online]. Available:

http://www.joda.org/joda-time/

[11] Bean Validation [Online]. Available:

http://beanvalidation.org/

[12] Semantic Versioning 2.0.0 [Online]. Available:

http://semver.org/

