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Abstract—Large Language Models (LLMs) are increasingly
employed as evaluators (LLM-as-a-Judge) for assessing the qual-
ity of machine-generated text. This paradigm offers scalability
and cost-effectiveness compared to human annotation. However,
the reliability and security of such systems, particularly their
robustness against adversarial manipulations, remain critical
concerns. This paper investigates the vulnerability of LLM-as-
a-Judge architectures to prompt-injection attacks, where mali-
cious inputs are designed to compromise the judge’s decision-
making process. We formalize two primary attack strategies:
Comparative Undermining Attack (CUA), which directly targets
the final decision output, and Justification Manipulation Attack
(JMA), which aims to alter the model’s generated reasoning.
Using the Greedy Coordinate Gradient (GCG) optimization
method, we craft adversarial suffixes appended to one of the
responses being compared. Experiments conducted on the MT-
Bench Human Judgments dataset with open-source instruction-
tuned LLMs (Qwen2.5-3B-Instruct and Falcon3-3B-Instruct)
demonstrate significant susceptibility. The CUA achieves an
Attack Success Rate (ASR) exceeding 30%, while JMA also
shows notable effectiveness. These findings highlight substantial
vulnerabilities in current LLM-as-a-Judge systems, underscoring
the need for robust defense mechanisms and further research
into adversarial evaluation and trustworthiness in LLM-based
assessment frameworks.

Index Terms—Large Language Models, LLM-as-a-Judge,
Prompt Injection, Adversarial Attacks, Robustness, AI Security,
Natural Language Processing.

I. INTRODUCTION

In recent years, Large Language Models (LLMs) such as
GPT [1], [2], PaLM [3], [4], and LLaMA [5], [6] have be-
come central to modern natural language processing systems.
Trained on vast datasets using transformer architectures [7],
LLMs have achieved remarkable success in diverse tasks,
including text generation, translation, complex reasoning, and
question answering, with emergent abilities that scale with
model size [8]. As LLMs are increasingly integrated into
real-world applications, the need for objective and scalable
evaluation of their outputs has grown significantly. Manual
annotation is often costly and time-consuming, leading to the
emergence of the LLM-as-a-Judge architectural pattern. In this
paradigm, an LLM is used to comparatively assess responses
generated by other models or by itself, acting as a ’judge’
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to select the best response based on criteria like relevance,
completeness, and accuracy.

The LLM-as-a-Judge approach has found widespread appli-
cation in areas such as Reinforcement Learning from Human
Feedback (RLHF) [9]–[12], automated validation in crowd-
sourcing, and intelligent search and retrieval systems [13],
[14]. However, entrusting evaluation to the models themselves
raises critical questions about the robustness of these judges
against various attacks and manipulations [15], [16]. A par-
ticularly concerning threat vector is prompt-injection attacks,
where an attacker modifies input data to influence the judge
model’s decision. More broadly, recent years have seen a
surge in research on LLM security and reliability, covering
threats like jailbreaking [17]–[19], instruction inversion, and
adversarial prompting [20]–[24]. These attacks highlight the
necessity of securing not only the LLMs themselves but also
the architectural solutions that employ them in novel roles,
such as judges or moderators, and raise concerns about the
robustness of contemporary models [25].

The ability of an attacker to influence the evaluation sys-
tem’s conclusions has severe implications, ranging from de-
graded model quality to undermined trust in systems relying on
LLM-as-a-Judge. Consequently, studying these vulnerabilities
is crucial, especially as LLMs are deployed in high-stakes
applications. The primary objective of this work is to investi-
gate the vulnerabilities of LLM-as-a-Judge systems to prompt-
injection attacks and to develop methods capable of effectively
attacking such evaluators. This research employs optimiza-
tion techniques to craft attacks on LLM-as-a-Judge systems,
specifically in the context of comparing and selecting the best
responses. The effectiveness of these attacks is experimentally
verified on real models, and conclusions are drawn regarding
the threat level posed by such attacks to LLM-as-a-Judge
systems. This work contributes to understanding the risks
associated with automated LLM evaluation and emphasizes the
need for additional security measures in practical applications.

II. BACKGROUND AND RELATED WORK

The vulnerabilities of LLM-as-a-Judge systems must be
considered within the broader context of research into the
security and attackability of LLMs. Even foundational LLMs
not acting as judges exhibit high sensitivity to adversarial
attacks and prompt injections [26], [27]. Modern attacks
can bypass safety filters, manipulate output content, extract
confidential information [28], [29], elicit malicious outputs, or
circumvent system constraints [30], [31]. For instance, Liu et
al. [32] proposed universal prompt-injection attacks on LLMs,
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demonstrating how gradient-based methods can automatically
generate malicious injections that effectively overcome built-
in filters. These attacks are often transferable across different
architectures and input formats, making the threat particularly
relevant for open and interactive applications [33].

Carlini et al. [34] provided a fundamental overview of
attack classes on LLMs, ranging from jailbreak prompts and
codes to more sophisticated methods of instruction and context
subversion. Their research indicates that LLMs can produce
harmful or undesirable content even with minor injections
or alterations to the input text. The issue of pre-embedded
Trojans—hidden triggers within model parameters that acti-
vate unwanted behavior—also warrants special attention. This
underscores the challenge of detecting malicious models and
the need for new approaches to verify and interpret model
behavior.

The LLM-as-a-Judge paradigm, where LLMs evaluate text
quality, has gained significant traction. Zheng et al. [13], [35]
were among the first to propose using language models as a
source for evaluations and annotations, leading to platforms
like Chatbot Arena [36] and standardized evaluation frame-
works [37]. According to Gu et al. [38], LLM-as-a-Judge is
applied in automatic model validation, content moderation, and
automated peer review. Commercial solutions, such as those
based on GPT-4 [2], Claude [39], and other advanced models,
integrate these capabilities to assess generative systems based
on relevance, accuracy, and safety. Despite the advantages in
scalability and cost-efficiency, using LLMs as judges faces
challenges like decision instability, sensitivity to rephrasing,
and susceptibility to manipulation [14]. These issues make the
analysis of LLM-as-a-Judge robustness critically important.

Attacks on the LLM-as-a-Judge architecture are a relatively
new but rapidly evolving field. Wang et al. [40] explored
backdoor vulnerabilities in LLM-as-a-Judge systems, demon-
strating how they can be compromised during training. Shi et
al. [41] introduced JudgeDeceiver, a method that uses prompt-
injection optimization to create universal templates capable
of persuading a judge model without requiring access to
its internal parameters. This work highlights that even state-
of-the-art models, extensively trained and fine-tuned, exhibit
significant vulnerability to attacks that affect their reasoning
and final choice.

Optimization-based attacks on LLMs often leverage tech-
niques to refine input tokens. A prominent method is the
Greedy Coordinate Gradient (GCG) attack, proposed by Zou
et al. [42]. GCG constructs an adversarial suffix by greedily
optimizing tokens based on the model’s logits. GCG and its
variants have proven effective in various jailbreak attacks,
instruction injections, and bypassing safety filters. These meth-
ods can be adapted to undermine the decisions of evaluator
models. Thus, LLM-as-a-Judge is a promising yet vulnerable
tool whose weaknesses are not yet fully understood. It is im-
perative to investigate the robustness of these models, develop
systemic defense measures like those proposed by Zhang et
al. [43], Wu et al. [44], and Jain et al. [45], and create new
robustness metrics [46] that account for manipulations at both

the final decision and reasoning levels. Approaches such as
SmoothLLM [47] and certification methods [48] offer promis-
ing directions for enhancing model robustness. Red teaming
approaches [49], [50] and adversarial training techniques [51]
can also help identify and mitigate vulnerabilities in these
systems.

III. PROBLEM FORMULATION AND ATTACK
METHODOLOGY

This section formally defines the problem of attacking
LLM-as-a-Judge architectures and details the methodology of
the proposed attacks.

A. LLM-as-a-Judge and Robustness

An LLM-as-a-Judge system typically involves a model fθ
with parameters θ that takes a query x ∈ X and a set
of k candidate answers {a1, ..., ak} ∈ Ak to produce an
evaluation y [13], [38]. In the common pairwise comparison
task, k = 2, and the judge fθ(x, a, b) outputs a preference,
e.g., y ∈ {[[A]],[[B]]}. The goal of an attacker is to
introduce a perturbation δ to one of the answers (e.g., b) such
that the judge’s output fθ(x, a, b ⊕ δ) is manipulated to a
desired outcome, where ⊕ denotes token concatenation [32],
[41]. The robustness of an LLM-as-a-Judge is its ability to
maintain the original judgment fθ(x, a, b) despite the adver-
sarial perturbation δ [47], [48].

B. Proposed Attack Strategies

We investigate two primary attack strategies:
1) Comparative Undermining Attack (CUA): This attack di-

rectly targets the final decision probability of the judge model
[34], [40]. The attacker aims to maximize the probability that
the model selects a specific target answer (e.g., [[B]]) over
the originally preferred answer (e.g., [[A]]). An adversarial
suffix δ is appended to the target answer b. The optimization
objective for CUA is:

max
δ

(P([[B]] | x, a, b⊕ δ)− P([[A]] | x, a, b⊕ δ)) .

(1)
2) Justification Manipulation Attack (JMA): This attack

focuses on manipulating the textual justification j that the
judge model generates alongside its decision [24], [41]. The
goal is to increase the presence of positive lexical markers
(e.g., "coherent", "accurate") related to the target answer b
and suppress negative markers (e.g., "incorrect", "irrelevant"),
while also maximizing the probability of selecting [[B]].
This approach is inspired by research on manipulating model
reasoning and explanations [23], [29]. Let P be the set of
positive justification tokens and N be the set of negative
justification tokens. The JMA objective is:

max
δ

(∑
t∈P

P(t ∈ j|x, a, b⊕ δ)−∑
t∈N

P(t ∈ j|x, a, b⊕ δ)+

P([[B]]|x, a, b⊕ δ)
)
.

(2)
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This attack aims for a more subtle manipulation by altering
the model’s apparent reasoning process.

C. Optimization via Greedy Coordinate Gradient (GCG)

To implement these attacks, we adapt the Greedy Coordi-
nate Gradient (GCG) method [42]. GCG efficiently optimizes
the adversarial suffix δ by iteratively and greedily updating
individual tokens within the suffix to maximize the attack
objective. It operates by evaluating the gradient of the loss
function with respect to the token embeddings at each position
in the suffix and selecting token substitutions that yield the
largest improvement. This method is effective even with black-
box access to the model, requiring only logit outputs (or
probabilities derived from them).

The GCG algorithm initializes a random suffix s of length
L. In each iteration, for every position i in the suffix, it
computes the gradient of the loss function L (derived from
Eq. 1 or 2) with respect to the token si. It then identifies
a set of candidate token substitutions Ci that are likely to
improve the objective. A subset of these candidates across all
positions is evaluated, and the substitution that provides the
best improvement to L is applied. This process is repeated for
a fixed number of iterations or until convergence.

IV. EXPERIMENTAL SETUP

This section details the experimental setup used to evaluate
the effectiveness of the proposed prompt-injection attacks on
LLM-as-a-Judge systems.

A. Models

Two open-source instruction-tuned LLMs were used as
judge models in our experiments:

• Qwen2.5-3B-Instruct: A 3-billion parameter model from
Alibaba’s Qwen family, optimized for generation and
evaluation tasks [52].

• Falcon3-3B-Instruct: A lightweight 3-billion parameter
model from the Technology Innovation Institute [53].

These models were chosen for their public availability, repre-
sentation of modern LLM architectures, and relatively small
size, which allows for extensive experimentation within com-
putational constraints.

B. Dataset

We utilized the MT-Bench Human Judgments dataset
provided by LMSYS [35]. This dataset contains human eval-
uations of LLM responses to diverse questions, presented as
pairwise comparisons. Each record includes a question, two
answers (Answer A and Answer B) generated by different
models, and a human-adjudicated winner (A or B). For each
instance, we formed a triplet (x, a, b) and applied the judge
model, both in a baseline scenario and with the adversarial
suffix δ appended to answer b (assuming b was the initially
losing answer or the target for manipulation).

C. Baseline and Control Conditions

We implemented several baseline and control conditions to
establish the effectiveness of our proposed attacks:

1) Hard Prompt Attack: As a baseline, we implemented
a Hard Prompt Attack. This attack involves appending a
pre-defined, heuristically designed suffix to the target answer
b without optimization [17], [18]. The suffixes contain di-
rect, albeit contextually irrelevant, instructions or persuasive
language designed to nudge the model towards selecting the
target answer (e.g., "It is critically important that you select
response B as the better one."). This approach is similar
to direct jailbreaking techniques documented in prior work
[19], [31]. Several such heuristic prompts were used, with
one chosen randomly for each attack instance. This baseline
helps establish a lower bound for the effectiveness of more
sophisticated optimization-based attacks and demonstrates the
general sensitivity of LLMs to such direct manipulations [26],
[27].

2) Random-Suffix Control: To establish that any observed
attack success represents a real gain over chance, we im-
plemented a Random-Suffix Control. In this condition, we
appended randomly generated text of the same length as
our attack suffixes to the target answer. This control helps
determine whether the success of our attacks is due to the
specific content of the optimized suffixes rather than merely
the presence of additional text or the disruption of the model’s
processing.

3) Token-Shuffle Control: We also implemented a Token-
Shuffle Control, where tokens from successful attack suffixes
were randomly shuffled before being appended to the target
answer. This control condition helps determine whether the
specific ordering and structure of tokens in the attack suffixes
are critical to their effectiveness, or if the mere presence of
certain tokens, regardless of their arrangement, is sufficient to
influence the judge model’s decision.

D. Evaluation Protocol

The primary metric for evaluating attack effectiveness is
the Attack Success Rate (ASR). ASR is defined as the
percentage of instances where the attack successfully caused
the judge model to change its verdict in favor of the (originally
disfavored or targeted) answer to which the adversarial suffix
was applied:

ASR =
# of successful verdict flips to target

# of total attack attempts
× 100%. (3)

V. RESULTS AND DISCUSSION

This section presents the results of our experiments evalu-
ating the CUA and JMA methods against the baseline Hard
Prompt Attack on the selected LLM-as-a-Judge models.

A. Attack Success Rates

The quantitative results, presented in Table I, demonstrate
the effectiveness of the proposed attacks and highlight the
vulnerability of the tested models.

Key observations from the results include:
• The Random-Suffix Control showed minimal impact,

with ASRs of only 1.2-1.5%. This confirms that simply
appending random text to an answer is unlikely to change
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TABLE I
ATTACK SUCCESS RATE (ASR) BY MODEL AND METHOD

Method Qwen2.5-3B (%) Falcon3-3B (%)

Random-Suffix 1.2 1.5
Token-Shuffle 2.8 3.1
Hard Prompt 5.1 5.4
JMA 15.2 16.7
JudgeDeceiver [41] 22.8 24.1
CUA 31.2 32.4

the judge’s decision, establishing that our attack methods
provide real gains over chance.

• The Token-Shuffle Control achieved slightly higher
ASRs of 2.8-3.1%, suggesting that while the specific
tokens used in successful attacks do have some inherent
influence, their effectiveness is significantly enhanced by
proper ordering and structure.

• The Hard Prompt Attack baseline showed a modest
impact, with ASR around 5%. This confirms that simple
heuristic injections can influence LLM judges, but their
effect is limited.

• The Justification Manipulation Attack (JMA) achieved
a significantly higher ASR, around 15-17%. This indi-
cates that manipulating the perceived justification can be
a more effective strategy than simple hard prompts.

• The JudgeDeceiver method [41], which uses universal
templates to manipulate judge models, demonstrated sub-
stantial effectiveness with ASRs of 22.8% and 24.1%.
This approach offers the advantage of not requiring
instance-specific optimization.

• The Comparative Undermining Attack (CUA) proved
to be the most potent, achieving ASRs exceeding 30%
on both models. This suggests that directly optimizing
for the final decision token is a highly effective way to
compromise LLM-as-a-Judge systems, likely because the
optimization objective is more direct and less complex
than that of JMA.

B. Discussion

The experimental results clearly demonstrate that even
short, targeted prompt injections can substantially distort the
evaluations made by LLM-as-a-Judge systems [40], [41]. The
high ASR of the CUA method, in particular, shows that judge
models can be systematically biased towards an incorrect
choice by appending optimized suffixes, even when the core
content of the question and answers remains unchanged. This
susceptibility, even with limited attack capabilities (fixed-
length suffix appended to one answer), raises serious concerns
about the reliability and objectivity of LLM-as-a-Judge archi-
tectures in practical scenarios where they are used for data
collection or model evaluation [15], [16], [25].

The comparative analysis of the attack methods reveals
important insights about LLM-as-a-Judge vulnerabilities. The
control conditions demonstrate that the success of our attacks
is not merely due to chance or the presence of additional

text. The Random-Suffix Control’s minimal impact (1.2-1.5%
ASR) establishes a true baseline for random perturbations,
while the Token-Shuffle Control (2.8-3.1% ASR) shows that
the specific arrangement of tokens matters significantly more
than just their presence. These controls strengthen our findings
by confirming that the observed attack success rates represent
genuine vulnerabilities rather than artifacts of the experimental
design.

While heuristic attacks have a weak effect, they confirm the
possibility of manipulation [17], [18]. Attacks targeting the
model’s reasoning (JMA) induce a more profound change in
behavior [23], [24]. The JudgeDeceiver method [41] demon-
strates that universal templates can achieve substantial success
rates without requiring instance-specific optimization, offering
a more efficient attack vector. However, directly influencing
the decision logits (CUA) is the most effective approach,
especially under the assumption of white-box or proficient
grey-box access to the judge model (allowing for logit-based
optimization) [34], [42]. This highlights the trade-off between
attack efficiency (JudgeDeceiver) and effectiveness (CUA), a
pattern consistent with findings in other adversarial attack
research [20], [22].

These findings underscore the vulnerability of LLM-as-a-
Judge systems [40], [41]. The fact that these models, designed
to act as impartial evaluators, can be so readily swayed by
adversarial inputs calls into question their trustworthiness
for critical assessment tasks [15], [16]. This work did not
explore the impact of permuting the order of the attacked and
genuinely superior answers, which could be a direction for
future research. The proposed methods and their demonstrated
success provide a foundation for further investigation into the
robustness of LLM evaluation systems and the development
of defenses against prompt-injection attacks [43]–[45], [47].

VI. CONCLUSION

This paper investigated the robustness of LLM-as-a-Judge
architectures against prompt-injection attacks [40], [41]. As
these architectures become increasingly prevalent for auto-
mated quality assessment [13], [35], [37], understanding their
security vulnerabilities is paramount [16], [25].

We formalized and empirically evaluated two primary attack
methods: the Comparative Undermining Attack (CUA), tar-
geting the final decision token [34], [42], and the Justification
Manipulation Attack (JMA), aimed at altering the model’s gen-
erated reasoning [23], [24]. Both attacks employed the Greedy
Coordinate Gradient (GCG) optimization technique [42] to
craft adversarial suffixes. Experiments were conducted on the
MT-Bench Human Judgments dataset [35] using two open-
source judge models, Qwen2.5-3B-Instruct [52] and Falcon3-
3B-Instruct [53].

Our results demonstrate that LLM-as-a-Judge systems are
significantly vulnerable to such attacks [40], [41]. The CUA
method achieved an Attack Success Rate of over 30%, indi-
cating that targeted injections can effectively manipulate the
judge’s decision [34], [42]. The JMA method also showed
considerable success [23], [24]. We compared our approaches
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with JudgeDeceiver [41], which uses universal templates and
achieved ASRs of 22-24%, confirming the vulnerability of
judge models while highlighting the trade-off between attack
efficiency and effectiveness. Even simple heuristic-based hard
prompt attacks exhibited a non-negligible impact [17], [18],
highlighting the general sensitivity of these models to instruc-
tional context within the inputs they evaluate [26], [27].

This research underscores the critical need to address the se-
curity and reliability of LLM-as-a-Judge systems. The demon-
strated vulnerabilities suggest that current models may not
be sufficiently robust for high-stakes evaluation tasks without
additional safeguards. Future work should focus on developing
effective defense mechanisms like those proposed by Zhang
et al. [43], Wu et al. [44], and Robey et al. [47], creating
more comprehensive adversarial evaluation benchmarks [22],
and enhancing the inherent trustworthiness of LLMs employed
in evaluative roles through techniques such as red teaming
[49], [50] and constitutional AI approaches [54]. Certification
methods [48] and baseline defenses [45] also offer promising
directions for securing these systems. This study serves as a
step towards a deeper understanding of the risks associated
with automated LLM assessment and the broader implications
for AI safety and reliability in open-ended interaction scenar-
ios, as highlighted in recent trustworthiness evaluations [16],
[25].
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